

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0128 of 20 February 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Mungo Injection system MIT-Hybrid for concrete

Bonded anchor for use in concrete

Mungo Befestigungstechnik AG Bornfeldstrasse 2 4603 OLTEN SCHWEIZ

Werk 13 / Plant 13

24 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-17/0128

Page 2 of 24 | 20 February 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z7673.17 8.06.01-30/17

European Technical Assessment ETA-17/0128

Page 3 of 24 | 20 February 2017

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Mungo Injection stem MIT-Hybrid for concrete" is a bonded anchor consisting of a cartridge with injection mortar MIT-Hybrid and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30, reinforcing bar in the range of diameter $\emptyset 8$ to $\emptyset 32$ mm or internal threaded rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance				
Characteristic resistance for static and quasi-static action and seismic performance categories C1, C2	See Annex C 1 to C 7				
Displacements	See Annex C 8 to C 10				

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

Z7673.17 8.06.01-30/17

European Technical Assessment ETA-17/0128

Page 4 of 24 | 20 February 2017

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

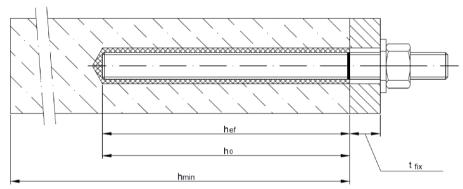
In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

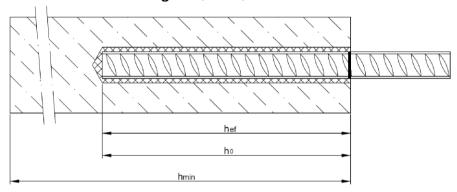
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

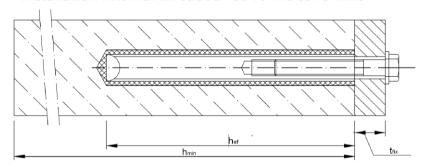
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 20 February 2017 by Deutsches Institut für Bautechnik


Andreas Kummerow p.p. Head of Department

beglaubigt: Baderschneider


Z7673.17 8.06.01-30/17


Installation threaded rod M8 to M30

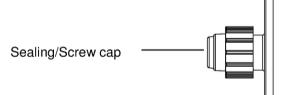
Installation reinforcing bar Ø8 to Ø32

Installation internal threaded rod IG-M6 to IG-M20

 t_{fix} = thickness of fixture

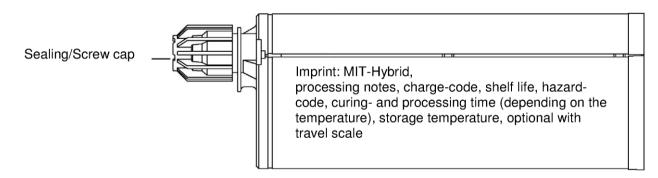
h_{ef} = effective anchorage depth

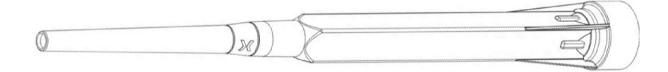
 h_0 = depth of drill hole


h_{min} = minimum thickness of member

Mungo Injection system MIT-Hybrid for concrete	
Product description Installed condition	Annex A 1

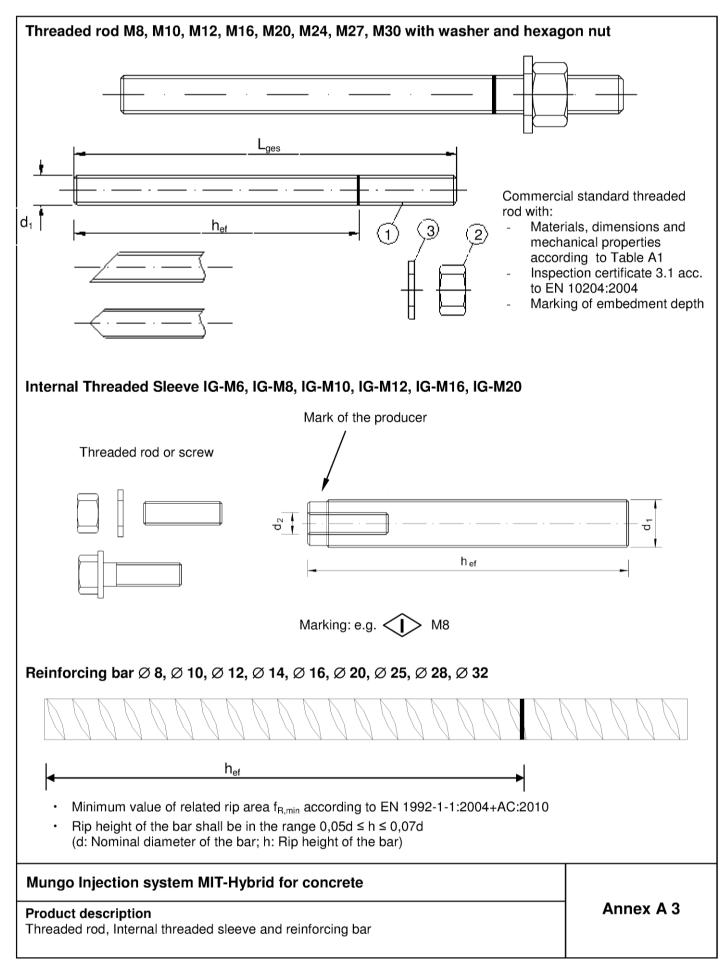
Cartridge: MIT-Hybrid


150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: coaxial)


Imprint: MIT-Hybrid,

processing notes, charge-code, shelf life, hazard-code, curing- and processing time (depending on the temperature), storage temperature, optional with travel scale

235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")



Static Mixer

Mungo Injection system MIT-Hybrid for concrete	
Product description Injection system	Annex A 2

Designation	Matarial						
Designation Steel, zinc plated ≥ 5 μm acc. to EN ISO 4042:1	Material						
Steel, hot-dip galvanised ≥ 40 μm acc. to EN ISO 4042:1		C:2009					
Anchor rod	Steel, EN 10087:1998 or EN 10263:200 Property class 4.6, 4.8, 5.6, 5.8, 8.8, EN 8:2005+AC:2009 A ₅ > 12% fracture elongation)1					
Hexagon nut, EN ISO 4032:2012	Steel acc. to EN 10087:1998 or EN 10263:2001 Property class 4 (for class 4.6 and 4.8 rod) EN ISO 898-2:20 Property class 5 (for class 5.6 and 5.8 rod) EN ISO 898-2:20 Property class 8 (for class 8.8 rod) EN ISO 898-2:2012						
Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Steel, zinc plated Property class 5.6, 5.8 and 8.8 EN ISO 8						
Internal threaded rod	Steel, zinc plated						
Stainless steel							
Anchor rod	Material 1.4401 / 1.4404 / 1.4571, EN 10 > M24: Property class 50 EN ISO 3506- ≤ M24: Property class 70 EN ISO 3506- A ₅ > 12% fracture elongation Material 1.4401 / 1.4404 / 1.4571 EN 10	1:2009 1:2009 088:2005,					
Hexagon nut, EN ISO 4032:2012	> M24: Property class 50 (for class 50 rod) EN ISO 3506-2:200 ≤ M24: Property class 70 (for class 70 rod) EN ISO 3506-2:200						
Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4401, 1.4404 or 1.4571, EN 10088-1:2005						
Internal threaded rod	Stainless steel: 1.4401 / 1.4404 / 1.4571, EN 10088-1:2014 Property class 70 (for class 70 rod) EN ISO 3506-1:2009						
High corrosion resistant steel							
Anchor rod	Material 1.4529 / 1.4565, EN 10088-1:2005,						
Hexagon nut, EN ISO 4032:2012	Material 1.4529 / 1.4565 EN 10088-1:20 > M24: Property class 50 (for class 50 rd ≤ M24: Property class 70 (for class 70 rd	od) EN ISO 3506-2:2009					
Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529 / 1.4565, EN 10088-1:20	•					
Internal threaded rod	Stainless steel: 1.4529 / 1.4565, EN 100 Property class 70 (for class 70 rod) EN I						
Reinforcing bars							
Rebar EN 1992-1-1:2004+AC:2010, Annex C							
Mungo Injection system MIT-Hybrid for co	oncrete						
Product description Materials		Annex A 4					

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Seismic action for Performance Category C1: M8 to M30, Rebar Ø8 to Ø32.
- Seismic action for Performance Category C2: M12

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.

Temperature Range:

- I: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- II: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)
- III: 40 °C to +160 °C (max long term temperature +100 °C and max short term temperature +160 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.

Installation:

- · Dry or wet concrete.
- Hole drilling by hammer or compressed air drill mode.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the Internal threaded rod.

Mungo Injection system MIT-Hybrid for concrete	
Intended Use Specifications	Annex B 1

Table B1: Installation parameters for threaded rod									
Anchor size		М 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Diameter of element	$d_1 = d_{nom} [mm] =$	8	10	12	16	20	24	27	30
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	22	28	30	35
Effective anabarage depth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120
Effective anchorage depth	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600
Diameter of clearance hole in the fixture ¹⁾	d _f [mm] =	9	12	14	18	22	26	30	33
Installation torque	T _{inst} [Nm] ≤	10	20	40 ²⁾	60	100	170	250	300
Minimum thickness of member	h _{min} [mm]		_{∍f} + 30 m ≥ 100 mn				h _{ef} + 2d ₀		
Minimum spacing	s _{min} [mm]	40	50	60	75	95	115	125	140
Minimum edge distance	c _{min} [mm]	35	40	45	50	60	65	75	80

For larger clearance hole see TR029 section 1.1; for application under seismic loading the diameter of clearance hole in the fixture shall be at maximum d₁ + 1mm or alternatively the annular gap between fixture and anchor rod shall be filled force-fit with mortar.

2) Maximum Torque moment for M12 with steel Grade 4.6 is 35 Nm

Installation parameters for rebar Table B2:

Rebar size	Rebar size Ø				Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Diameter of element	$d = d_{nom} [mm] =$	8	10	12	14	16	20	25	28	32
Nominal drill hole diameter	d ₀ [mm] =	12 14		16	18	20	25	32	35	40
Effective anchorage donth	h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128
Effective anchorage depth	h _{ef,max} [mm] =	160	200	240	280	320	400	500	560	640
Minimum thickness of member	h _{min} [mm]	h + 30 mm								
Minimum spacing	s _{min} [mm]	40 50		60	70	75	95	120	130	150
Minimum edge distance	c _{min} [mm]	35	40	45	50	50	60	70	75	85

Table B3: Installation parameters for Internal threaded rod

Anchor size		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Internal diameter of sleeve	d ₂ [mm] =	6	8	10	12	16	20
Outer diameter of sleeve ²⁾	$d_1 = d_{nom} [mm] =$	10	12	16	20	24	30
Nominal drill hole diameter	$d_0 [mm] =$	12	14	18	22	28	35
Effective encharage depth	h _{ef,min} [mm] =	60	70	80	90	96	120
Effective anchorage depth	$h_{ef,max} [mm] =$	200	240	320	400	480	600
Diameter of clearance hole in the fixture ¹⁾	$d_f [mm] =$	7	9	12	14	18	22
Installation torque	T _{inst} [Nm] ≤	10	10	20	40	60	100
Thread engagement length Min/max	I _{IG} [mm] =	8/20	8/20	10/25	12/30	16/32	20/40
Minimum thickness of member	h _{min} [mm]		+ 30 mm 00 mm h _{ef} + 2d ₀				
Minimum spacing	s _{min} [mm]	50	60	75	95	115	125
Minimum edge distance	c _{min} [mm]	40	45	50	60	65	75

¹⁾ For larger clearance hole see TR029 section 1.1
2) With metric threads according to EN 1993-1-8:2005+AC:2009

Mungo Injection system MIT-Hybrid for concrete	
Intended Use Installation parameters	Annex B 2

Table B4: Parameter cleaning and setting tools

- 三日		- 3600								
Threaded Rod	Rebar	Internal threaded rod	d₀ Drill bit - Ø		l₀ sh - Ø	d _{b,min} min. Brush - Ø	Piston plug		Installation direction a of piston plug	
(mm)	(mm)	(mm)	(mm)		(mm)	(mm)		1		
M8			10	RB10	11,5	10,5	-	-	-	-
M10	8	IG-M6	12	RB12	13,5	12,5	-	-	-	-
M12	10	IG-M8	14	RB14	15,5	14,5	-	-	-	-
	12		16	RB16	17,5	16,5	-	-	-	1
M16	14	IG-M10	18	RB18	20,0	18,5	VS18			
	16		20	RB20	22,0	20,5	VS20			
M20		IG-M12	22	RB22	24,0	22,5	VS22			
	20		25	RB25	27,0	25,5	VS25	h . >	h.>	
M24		IG-M16	28	RB28	30,0	28,5	VS28	h _{ef} >	h _{ef} > 250 mm	all
M27			30	RB30	31,8	30,5	VS30	250 mm 250	250 mm	
	25		32	RB32	34,0	32,5	VS32			
M30	28	IG-M20	35	RB35	37,0	35,5	VS35			
	32		40	RB40	43,5	40,5	VS40	1		

Drill bit diameter (d_0): 10 mm to 20 mm Drill hole depth (h_0): < 10 d_s Only in non-cracked concrete

CAC - Rec. compressed air tool (min 6 bar)

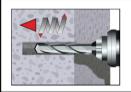
Drill bit diameter (d₀): all diameters

Drill bit diameter (d_0): 18 mm to 40 mm

Steel brush RB

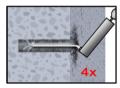
Drill bit diameter (d₀): all diameters

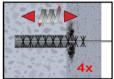
Intended Use


Cleaning and setting tools

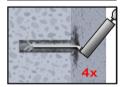
Annex B 3

Installation instructions


Drilling of the bore hole

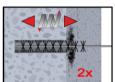

1. Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3). In case of aborted drill hole: the drill hole shall be filled with mortar

Attention! Standing water in the bore hole must be removed before cleaning.


MAC: Cleaning for bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_s$ (uncracked concrete only!)

2a. Starting from the bottom or back of the bore hole, blow the hole clean by a hand pump (Annex B 3) a minimum of four times.

2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of four times in a twisting motion.
If the bore hole ground is not reached with the brush, a brush extension must be used.



2c. Finally blow the hole clean again with a hand pump (Annex B 3) a minimum of four times.

CAC: Cleaning for all bore hole diameter in uncracked and cracked concrete

2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 3) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

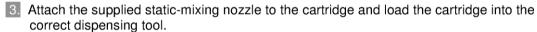
2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of two times.
If the bore hole ground is not reached with the brush, a brush extension must be used.

2c. Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 3) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

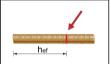
After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

Mungo Injection system MIT-Hybrid for concrete

Intended Use

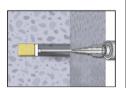

Installation instructions

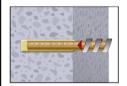
Annex B 4



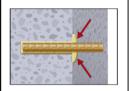
Installation instructions (continuation)

For every working interruption longer than the recommended working time (Table B5) as well as for new cartridges, a new static-mixer shall be used.

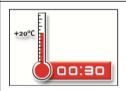

4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.


5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour.

6. Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used. Observe the gel-/ working times given in Table B5.



- 7. Piston Plugs and mixer nozzle extensions shall be used according to Table B4 for the following applications:
 - Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth h_{ef} > 250mm
 - Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 18 mm



8. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.

The anchor shall be free of dirt, grease, oil or other foreign material.

9. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod shall be fixed (e.g. wedges).

10. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B5).

11. After full curing, the add-on part can be installed with up to the max. torque (Table B1 or B3) by using a calibrated torque wrench.

Mungo Injection system MIT-Hybrid for concrete

Intended Use

Installation instructions (continuation)

Annex B 5

Table B5:	Ma	aximum w	orking time and minim	num curing time	
Concrete	tem	perature	Gelling working time	Minimum curing time in wet concrete	
- 5 °C	to	- 1 °C	50 min	5 h	10 h
0 °C	to	+ 4 °C	25 min	3,5 h	7 h
+ 5 °C	to	+ 9 °C	15 min	2 h	4 h
+ 10 °C	to	+ 14 °C	10 min	1 h	2 h
+ 15 °C	to	+ 19 °C	6 min	40 min	80 min
+ 20 °C	to	+ 29 °C	3 min	30 min	60 min
+ 30 °C	to	+ 40 °C	2 min	30 min	60 min
Cartridge	tem	perature		+5°C to +40°C	

Mungo Injection system MIT-Hybrid for concrete	
Intended Use Curing time	Annex B 6

1,56

Tal	ole C1: Characteristic values for resistance of threaded r		n res	istar	ice a	nd s	teel s	shea	r		
Size				M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Chara	acteristic tension resistance, Steel failure										
Steel,	Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Steel,	Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280
Steel,	Property class 8.8	N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449
Nichtr	rostender Stahl A4 and HCR, Property class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
Nichtr	rostender Stahl A4 and HCR, Property class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	-	-
Chara	acteristic tension resistance, Partial safety factor										
Steel,	Property class 4.6	γ _{Ms,N} 1)	[-]				2	,0			
Steel,	Property class 4.8	γ _{Ms,N} 1)	[-]				1	,5			
Steel,	Property class 5.6	γ _{Ms,N} 1)	[-]				2	,0			
Steel,	Property class 5.8	γ _{Ms,N} 1)	[-]				1	,5			
Steel,	Property class 8.8	γ _{Ms,N} 1)	[-]	1,5							
Stainl	ess steel A4 and HCR, Property class 50	γ _{Ms,N} 1)	[-]				2,	86			
Stainl	ess steel A4 and HCR, Property class 70	γ _{Ms,N} 1)	[-]				1,	87			
Chara	acteristic shear resistance, Steel failure										
Æ	Steel, Property class 4.6 and 4.8	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112
Without lever arm	Steel, Property class 5.6 and 5.8	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
t lev	Steel, Property class 8.8	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
thou	Stainless steel A4 and HCR, Property class 50	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
\geq	Stainless steel A4 and HCR, Property class 70	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	-	-
_	Steel, Property class 4.6 and 4.8	$M_{Rk,s}$	[Nm]	15	30	52	133	260	449	666	900
arm	Steel, Property class 5.6 and 5.8	$M_{Rk,s}$	[Nm]	19	37	65	166	324	560	833	1123
With lever	Steel, Property class 8.8	$M_{Rk,s}$	[Nm]	30	60	105	266	519	896	1333	1797
Vith I	Stainless steel A4 and HCR, Property class 50	$M_{Rk,s}$	[Nm]	19	37	66	167	325	561	832	1125
>	Stainless steel A4 and HCR, Property class 70	$M_{Rk,s}$	[Nm]	26	52	92	232	454	784	-	-
Chara	acteristic shear resistance, Partial safety factor	<u> </u>	'								
Steel, Property class 4.6			[-]				1,	67			
Steel,	Property class 4.8	γ _{Ms,V} 1)	[-]				1,	25			
Steel,	Property class 5.6	γ _{Ms,V} 1)	[-]				1;	67			
Steel,	Property class 5.8	γ _{Ms,V} 1)	[-]				1,	25			
Steel,	Property class 8.8	γ _{Ms,V} 1)	[-]		1,25						
Stainl	ess steel A4 and HCR, Property class 50	γ _{Ms,V} 1)	[-]				2,	38			
		11									

¹⁾ in absence of national regulation

Stainless steel A4 and HCR, Property class 70

Mungo Injection system MIT-Hybrid for concrete	
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

γ_{Ms,V} 1)

[-]

Table C2:	Characteristic values of tension quasi-static action and seismic a							•
A	ala al usa al	14.0	11.40	14.40	14.40	11.00	1404	14.0

Anchor size threaded	rod			М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Steel failure												
		$N_{Rk,s}$	[kN]				see Ta	able C1				
Characteristic tension r	esistance	$N_{Rk,s,C1}$	[kN]				1,0 •	$N_{Rk,s}$				
		$N_{\text{Rk},s,C2}$	[kN]	NPD 1,0 · No Performance Determined (NP								
Partial safety factor		$\gamma_{\text{Ms,N}}$	[-]				see Ta	able C1				
Combined pull-out an	d concrete cone failur	е										
Characteristic bond res	istance in non-cracked o	concrete C20/2	25									
Temperature range I: 80°C/50°C	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	17	17	16	15	14	13	13	13	
Temperature range II: 120°C/72°C	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	15	14	14	13	12	12	11	11	
Temperature range III: 160°C/100°C	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	12	12	11	10	9,5	9,0	9,0	9,0	
Characteristic bond res	istance in cracked conc	rete C20/25										
Temperature range I: dry and wet concrete		$\tau_{\text{Rk,cr}} = \tau_{\text{Rk,C1}}$	[N/mm ²]	6,5	7,0	7,5	8,5	8,5	8,5	8,5	8,5	
80°C/50°C	dry and wet concrete	$\tau_{Rk,C2}$	[N/mm²]	N	PD	3,6			NPD			
Temperature range II:	dry and wet concrete	$\tau_{\text{Rk,cr}} = \tau_{\text{Rk,C1}}$	[N/mm ²]	5,5	6,0	6,5	7,5	7,5	7,5	7,5	7,5	
120°C/72°C	dry and wet concrete	$\tau_{\text{Rk,C2}}$	[N/mm ²]	N	PD	3,1			NPD			
Temperature range III:	dry and wet concrete	$\tau_{\text{Rk,cr}} = \tau_{\text{Rk,C1}}$	[N/mm ²]	5,0	5,5	6,0	6,5	6,5	6,5	6,5	6,5	
160°C/100°C	dry and wet concrete	$\tau_{\text{Rk},\text{C2}}$	[N/mm ²]	NPD 2,5 NPD								
		C25/	30				1,	02				
		C30/	37				1,	04				
Increasing factors for c	oncrete	C35/	1,07									
ψ_{c}		C40/	C40/50 1,08				08					
		C45/	55	1,09								
		C50/	60	1,10								
Factor according to	Non-cracked concrete			10,1								
CEN/TS 1992-4-5 Section 6.2.2.3	Cracked concrete	k ₈	[-]				7	,2				
Concrete cone failure								,				
Factor according to CEN/TS 1992-4-5	Non-cracked concrete	k _{ucr}	[-]				10),1				
Section 6.2.3.1	Cracked concrete	k _{cr}	[-]				7	,2				
Edge distance		C _{cr.N}	[mm]				1,5	,5 h _{ef}				
Axial distance		S _{cr,N}	[mm]) h _{ef}				
Splitting failure		2.7.1										
	h/h _{ef} ≥ 2,0						1,0) h _{ef}				
Edge distance	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2.5 - \frac{h}{h_{ef}} \right)$								
	h/h _{ef} ≤ 1,3		•				2,4	l h _{ef}				
Axial distance		S _{cr,sp}	[mm]				2 0	cr,sp				
Installation safety facto (dry and wet concrete)	r (CAC)	$\gamma_2 = \gamma_{inst}$	[-]		1,0 ((1,2) ¹⁾			1	,2		
Installation safety facto (dry and wet concrete)	r (MAC)	$\gamma_2 = \gamma_{inst}$	[-]		1	,2				-		

¹⁾ Value in brackets for cracked concrete

Mungo Injection system MIT-Hybrid for concrete	
Performances Characteristic values of tension loads for threaded rods under static, quasi-static action and seismic action (performance category C1+C2)	Annex C 2

Outside diameter of anchor

Installation safety factor

 d_{nom}

 $\gamma_2=\gamma_{inst}$

[mm]

[-]

8

10

12

16

1,0

20

24

27

30

Table C3: Characteris static action									, quas	si-	
Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	М 30	
Steel failure without lever arm											
	$V_{Rk,s}$	[kN]				see Ta	ble C1				
Characteristic shear resistance	$V_{Rk,s,C1}$	[kN]				0,70	$V_{Rk,s}$				
	$V_{Rk,s,C2}$	[kN]	(N	PD)	0,80 • V _{Bk.s}	No	Performa	nce Deter	mined (Nf	PD)	
Partial safety factor	γ _{Ms,V}	[-]				see Ta	ble C1				
Steel failure with lever arm	·										
	M ⁰ _{Rk,s}	[Nm]				see Ta	ble C1				
Characteristic bending moment	M ⁰ _{Rk,s,C1}	[Nm]	No Performance Determined (NPD)								
	M ⁰ _{Rk,s,C2}	[Nm]			No Perf	ormance [Determine	d (NPD)			
Partial safety factor	γMs,V	[-]				see Ta	ble C1				
Concrete pry-out failure											
Factor k_3 in equation (27) of CEN/TS 1992-4-5 Section 6.3.3 Factor k in equation (5.7) of Technical Report TR 029	k ₍₃₎	[-]				2	,0				
Installation safety factor											
Concrete edge failure	- 1										
Effective length of anchor	If	[mm]				l _f = min(h	ef; 8 d _{nom})				

Mungo Injection system MIT-Hybrid for concrete	
Performances Characteristic values of shear loads for threaded rods under static, quasi-static action and seismic action (performance category C1+C2)	Annex C 3

	haracteristic val			ds for i	internal	thread	ed rods	under		
Anchor size internally	threaded rods			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20	
Steel failure ¹⁾					10.11.0	10.11.10	79.11.1	10.11.10		
Characteristic tension re Steel, strength class 5.8		N _{Rk,s}	[kN]	10	17	29	42	76	123	
Partial safety factor		γMs,N	[-]			1	,5			
Characteristic tension re Steel, strength class 8.8		N _{Rk,s}	[kN]	16	27	46	67	121	196	
Partial safety factor		γMs,N	[-]			1	,5			
	Characteristic tension resistance, Stainless Steel A4, Strength class 70		[kN]	14	26	41	59	110	172	
Partial safety factor		γ _{Ms,N}	[-]			1,	87			
<u> </u>	d concrete cone failure									
	stance in non-cracked co	ncrete C20/25								
Temperature range I: 80°C/50°C	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	17	16	15	14	13	13	
Temperature range II: 120°C/72°C	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	14	14	13	12	12	11	
Temperature range III: 160°C/100°C	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	12	11	10	9,5	9,0	9,0	
	stance in cracked concret	te C20/25								
Temperature range I: 80°C/50°C	dry and wet concrete	$ au_{Rk,cr}$	[N/mm²]	7,0	7,5	8,5	8,5	8,5	8,5	
Temperature range II: 120°C/72°C	dry and wet concrete	$ au_{Rk,cr}$	[N/mm²]	6,0	6,5	7,5	7,5	7,5	7,5	
Temperature range III: 160°C/100°C	dry and wet concrete	$ au_{Rk,cr}$	[N/mm²]	5,5	6,0	6,5	6,5	6,5	6,5	
		C25.	/30	1,02						
		C30/37		1,04						
Increasing factors for co	ncrete	C35		1,07						
ψ_{c}		C40.		1,08						
		C45.		1,09						
	1	C50.	/60	1,10						
Factor according to CEN/TS 1992-4-5	Non-cracked concrete	- k ₈	[-]			10	0,1			
Section 6.2.2.3	Cracked concrete	N8	[-]			7	,2			
Concrete cone failure	•									
Factor according to CEN/TS 1992-4-5	Non-cracked concrete	k _{ucr}	[-]				0,1			
Section 6.2.3.1	Cracked concrete	k _{cr}	[-]				,2			
Edge distance		C _{cr,N}	[mm]			1,5	h _{ef}			
Axial distance		S _{cr,N}	[mm]			3,0) h _{ef}			
Splitting failure										
	h/h _{ef} ≥ 2,0					1,0) h _{ef}			
Edge distance 2,0> h/h _{ef} > 1,3		C _{cr,sp}	[mm]			$2 \cdot h_{ef} \left(2 \right)$	$,5-\frac{h}{h_{ef}}$			
						∤ h _{ef}				
Axial distance		S _{cr,sp}	[mm]			2 (cr,sp			
Installation safety factor (dry and wet concrete)	(CAC)	$\gamma_2 = \gamma_{inst}$	[-]		1,0 (1,2)2))		1,2		
Installation safety factor (dry and wet concrete)	(MAC)	$\gamma_2 = \gamma_{inst}$	[-]	1,2 -						
	rews or threaded rods (in	cl. nut and wash	ner) must con	noly with the	e appropriat	te material a	nd property	class of the	internal	

Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internal threaded rod and the fastening element.

Value in brackets for cracked concrete.

Mungo Injection system MIT-Hybrid for concrete	
Performances Characteristic values of tension loads for internal threaded rods under static and quasi-static action	Annex C 4

Table C5: Characteristic values of shear loads for internal threaded rods under static and quasi-static action

Anchor size for internally threaded ro-		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20	
Steel failure without lever arm1)								
Characteristic shear resistance, Steel, strength class 5.8	$V_{Rk,s}$	[kN]	5	9	15	21	38	61
Partial safety factor	γMs,V	[-]			1,2	.5		
Characteristic shear resistance, Steel, strength class 8.8	$V_{Rk,s}$	[kN]	8	14	23	34	60	98
Partial safety factor	γMs,V	[-]			1,2	:5		
Characteristic shear resistance, Stainless Steel A4, Strength class 70	$V_{Rk,s}$	[kN]	7	13	20	30	55	86
Partial safety factor	γMs,V	[-]			1,5	6		
Steel failure with lever arm1)								
Characteristic bending moment, Steel, strength class 5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325
Partial safety factor	γMs,V	[-]			1,2	.5		
Characteristic bending moment, Steel, strength class 8.8	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519
Partial safety factor	γMs,∨	[-]			1,2	.5		
Characteristic bending moment, Stainless Steel A4, Strength class 70	M ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	454
Partial safety factor	γMs,∨	[-]			1,5	6		
Concrete pry-out failure								
Factor k₃ in equation (27) of CEN/TS 1992-4-5 Section 6.3.3 Factor k in equation (5.7) of Technical Report TR 029	k ₍₃₎	[-]			2,	0		
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]			1,	0		
Concrete edge failure								
Effective length of anchor	I _f	[mm]			$I_f = min(h_e)$	_f ; 8 d _{nom})		
Outside diameter of anchor	d _{nom}	[mm]	10	12	16	20	24	30
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]			1,0)		
11		-		1.1				

Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internal threaded rod and the fastening element.

Mungo Injection system MIT-Hybrid for concrete	
Performances Characteristic values of shear loads for internal threaded rods under static and quasi-static action	Annex C 5

	haracteristic vaction and seisn								ic, qı	ıasi-s	tatic			
Anchor size reinforci	ng bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Steel failure														
Characteristic tension r	esistance	$N_{Rk,s} = N_{Rk,s,C1}$	[kN]					A _s • f _{uk} ²⁾						
Cross section area		As	[mm²]	50	50 79 113 154 201 214 491 616						616	804		
Partial safety factor		γMs,N	[-]					1,4 ³⁾						
Combined pull-out an	d concrete cone failur	e												
Characteristic bond res	sistance in non-cracked o	concrete C20/	25											
Temperature range I: 80°C/50°C	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	14	14	14	14	13	13	13	13	13		
Temperature range II: 120°C/72°C	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	13	12	12	12	12	11	11	11	11		
Temperature range III: 160°C/100°C	dry and wet concrete	$ au_{ m Rk,ucr}$	[N/mm²]	10	10	9,5	9,5	9,5	9,0	9,0	9,0	9,0		
Characteristic bond res	sistance in cracked conc	rete C20/25												
Temperature range I: 80°C/50°C	dry and wet concrete	$\tau_{\text{Rk,cr}} = \tau_{\text{Rk,C1}}$	[N/mm²]	5,0	5,5	6,0	6,0	7,5	7,5	7,5	7,5	8,0		
Temperature range II: 120°C/72°C	dry and wet concrete	$\tau_{\text{Rk,cr}} = \tau_{\text{Rk,C1}}$	[N/mm²]	4,5	5,0	5,0	5,5	6,5	6,5	6,5	6,5	7,0		
Temperature range III: 160°C/100°C	dry and wet concrete	$\tau_{\text{Rk,cr}} = \tau_{\text{Rk,C1}}$	[N/mm²]	4,0 4,5 4,5 5,0 5,5				5,5	6,0	6,0	5,5	6,5		
		C25/						1,02						
		C30/						1,04						
Increasing factors for c ψ_c	oncrete	C35/	40/50 1,08					1,07						
Ψ¢		C45/	.,				,							
			C50/60 1,10											
Factor according to	Non-cracked concrete			10,1										
CEN/TS 1992-4-5 Section 6.2.2.3	Cracked concrete	k ₈	[-]	7,2										
Concrete cone failure														
Factor according to CEN/TS 1992-4-5	Non-cracked concrete	k _{ucr}	[-]					10,1						
Section 6.2.3.1	Cracked concrete	k _{cr}	[-]					7,2						
Edge distance		C _{cr,N}	[mm]					$1,5\ h_{ef}$						
Axial distance		S _{cr,N}	[mm]					$3,0\ h_{\text{ef}}$						
Splitting failure														
	h/h _{ef} ≥ 2,0							1,0 h _{ef}						
Edge distance	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]	$2 \cdot h_{e\!f} \left(2, 5 - \frac{h}{h_{e\!f}} \right)$										
	h/h _{ef} ≤ 1,3							2,4 h _{ef}						
Axial distance		S _{cr,sp}	[mm]					$2\;c_{\text{cr,sp}}$						
Installation safety facto (dry and wet concrete)	, ,	γ2 = γinst	[-]		,	1,0 (1,2)	1)		1,2					
Installation safety facto (dry and wet concrete)	r (MAC)	γ2 = Yinst	[-]			1,2								

Mungo Injection system MIT-Hybrid for concrete	
Performances Characteristic values of tension loads for rebar under static, quasi-static action and seismic action (performace category C1)	Annex C 6

Value in brackets for cracked concrete
 f_{uk} shall be taken from the specifications of reinforcing bars
 in absence of national regulation

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure without lever arm												
	V _{Rk,s}	[kN]				C),50 • N _{Rk}	,s				
Characteristic shear resistance	V _{Rk,s,C1}	[kN]	0,37 • N _{Rk,s}									
Partial safety factor	γ _{Ms,V}	[-]					1,52)					
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂		0,8									
Steel failure with lever arm												
Characteristic bending moment	$M^0_{Rk,s}$	[Nm]	1.2 • W _{el} • f _{uk} ¹⁾									
	M ⁰ _{Rk,s,C1}	[Nm]	No Performance Determined (NPD)									
Elastic section modulus	Wel	[mm³]	50	98	170	269	402	785	1534	2155	3217	
Partial safety factor	γ̃Ms,V	[-]					1,5 ²⁾					
Concrete pry-out failure												
Factor k₃ in equation (27) of CEN/TS 1992-4-5 Section 6.3.3 Factor k in equation (5.7) of Technical Report TR 029	k ₍₃₎	[-]					2,0					
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]					1,0					
Concrete edge failure												
Effective length of anchor	If	[mm]	$I_f = min(h_{ef}; 8 d_{nom})$									
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32	
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]	1,0									

 $^{^{1)}}_{\rm uk}$ shall be taken from the specifications of reinforcing bars $^{2)}_{\rm in}$ absence of national regulation

Mungo Injection system MIT-Hybrid for concrete	
Performances Characteristic values of shear loads for rebar under static, quasi-static action and seismic action (performance category C1)	Annex C 7

Table C8: Displacements under tension load ¹⁾ (threaded rod)												
Anchor size thread	led rod		М 8	M 10	M 12	M 16	M 20	M24	M 27	М 30		
Non-cracked conc	rete C20/25 ur	der static and qua	si-statio	action						•		
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,031	0,032	0,034	0,037	0,039	0,042	0,044	0,046		
80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,040	0,042	0,044	0,047	0,051	0,054	0,057	0,060		
Temperature range II:	δ _{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,035	0,038	0,041	0,044	0,046	0,048		
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,042	0,044	0,045	0,049	0,053	0,056	0,059	0,062		
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,121	0,126	0,131	0,142	0,153	0,163	0,171	0,179		
160°C/100°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,124	0,129	0,135	0,146	0,157	0,168	0,176	0,184		
Cracked concrete	C20/25 under	static, quasi-static	and sei	smic C	1 action							
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,106		
80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,137		
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,093	0,098	0,103	0,107	0,110		
120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,143		
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,412		
160°C/100°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,424		
Cracked concrete	C20/25 under	seismic C2 action										
All temperature	$\delta_{N,seis(DLS)}$	[mm/(N/mm²)]	/N.I.	DD)	0,120	No Parameter Determined (NPD)			DD)			
ranges	$\delta_{N,seis(ULS)}$	[mm/(N/mm²)]	(PD)	0,140	INO	Paramet	er Deterr	ninea (N	PD)		

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

τ: action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}} \text{-factor } \cdot \tau;$

Displacements under shear load¹⁾ (threaded rod) Table C9:

Anchor size thre	aded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Non-cracked and cracked concrete C20/25 under static, quasi-static and seismic C1 action											
All temperature ranges	δ_{V0} -factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03	
	$\delta_{V_\infty}\text{-factor}$	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	
Cracked concret	e C20/25 under	seismic C2 action	1								
All temperature ranges	$\delta_{V,seis(DLS)}$	[mm/(kN)]	I	No Parameter Determined		1 Vier IND Parameter Liefe			etermined		
	$\delta_{V,seis(ULS)}$	[mm/(kN)]		PD)	0,27		(NPD)				

 $[\]begin{array}{l} ^{1)} \mbox{ Calculation of the displacement} \\ \delta_{V0} = \delta_{V0}\mbox{-factor} \quad V; \qquad V \\ \delta_{V\infty} = \delta_{V\infty}\mbox{-factor} \quad V; \end{array}$

V: action shear load

Mungo Injection system MIT-Hybrid for concrete	
Performances	Annex C 8
Displacements (threaded rods)	

Table C10: D	Table C10: Displacements under tension load ¹⁾ (rebar)												
Anchor size reinfo	orcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Non-cracked concrete C20/25 under static and quasi-static action													
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,031	0,032	0,034	0,035	0,037	0,039	0,043	0,045	0,048		
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,040	0,042	0,044	0,045	0,047	0,051	0,055	0,058	0,063		
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,035	0,036	0,038	0,041	0,045	0,047	0,050		
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,042	0,044	0,045	0,047	0,049	0,053	0,057	0,060	0,065		
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,121	0,126	0,131	0,137	0,142	0,153	0,164	0,172	0,186		
160°C/100°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,124	0,129	0,135	0,141	0,146	0,157	0,169	0,177	0,192		
Cracked concrete	C20/25 uı	nder static, qua	si-statio	and se	eismic C	1 actio	n						
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,103	0,108		
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,133	0,141		
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,107	0,113		
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,138	0,148		
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,399	0,425		
160°C/100°C	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm²)]	0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,410	0,449		

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor \cdot τ ; τ : action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}} \text{-factor } \cdot \tau;$

Table C11: Displacement under shear load 1) (rebar)

Anchor size reinf	Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32			
For concrete C20/25 under static, quasi-static and seismic C1 action												
All temperature	δ_{V0} -factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	
ranges	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04	

¹⁾ Calculation of the displacement

$$\begin{split} &\delta_{V0} = \delta_{V0}\text{-factor} \cdot V; \\ &\delta_{V\infty} = \delta_{V\infty}\text{-factor} \cdot V; \end{split}$$
V: action shear load

Mungo Injection system MIT-Hybrid for concrete	
Performances	Annex C 9
Displacements (rebar)	

8.06.01-30/17 Z7682.17

Table C12: Displacements under tension load ¹⁾ (Internal threaded rod)												
Anchor size Interna	al threaded roo	t	IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20				
Non-cracked conci	rete C20/25 un	der static and quas	i-static ac	tion	•							
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,037	0,039	0,042	0,046				
80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,042	0,044	0,047	0,051	0,054	0,060				
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,034	0,035	0,038	0,041	0,044	0,048				
120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,044	0,045	0,049	0,053	0,056	0,062				
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,126	0,131	0,142	0,153	0,163	0,179				
160°C/100°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,129	0,135	0,146	0,157	0,168	0,184				
Cracked concrete (C20/25 under s	static and quasi-sta	tic action									
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,083	0,085	0,090	0,095	0,099	0,106				
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,170	0,110	0,116	0,122	0,128	0,137				
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,086	0,088	0,093	0,098	0,103	0,110				
120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,111	0,114	0,121	0,127	0,133	0,143				
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,321	0,330	0,349	0,367	0,385	0,412				
160°C/100°C	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm²)]	0,330	0,340	0,358	0,377	0,396	0,424				

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}\text{-factor} \ \cdot \ \tau;$

τ: action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}} \text{-factor} \quad \tau;$

Table C13: Displacements under shear load¹⁾ (Internal threaded rod)

Anchor size Internal threaded rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20	
Non-cracked and cracked concrete C20/25 under static and quasi-static action									
All temperature ranges	δ _{v0} -factor	[mm/(kN)]	0,07	0,06	0,06	0,05	0,04	0,04	
	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,10	0,09	0,08	0,08	0,06	0,06	

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor \cdot V; V: action shear load

 $\delta_{V_{\infty}} = \delta_{V_{\infty}} \text{-factor} \quad V;$

Mungo Injection system MIT-Hybrid for concrete	
Performances Displacements (Internal threaded rod)	Annex C 10