

Declaration of Performance

1109-CPR-0506

1. Unique identification code of the product-type: Mungo MQL plastic anchor for multiple use in concrete and masonry for non-structural applications

2. Manufacturer: Mungo Befestigungstechnik AG, Bornfeldstrasse 2, CH-4603 Olten/Switzerland

3. System/s of AVCP: System 2+

4. Intended use or use/es:

Product	Intended use
Plastic anchors for use in	For use in systems, such as façade systems, for fixing or supporting elements
concrete and masonry	which contribute to the stability of the systems

5. European Assessment Document: ETAG 020 Part 1: "Plastic anchors for multiple use in concrete and masonry for non-structural applications", Edition March 2012, used as EAD
 European Technical Assessment: ETA-11/0008 of 28 April 2016
 Technical Assessment Body: DIBt – Deutsches Institut für Bautechnik
 Notified body/ies: IFBT GmbH NB 1109

6. Declared performance:

Mechanical resistance and stability (BWR 1)

The essential characteristic regarding mechanical resistance and stability are included under the Basic Works Requirements Safety in use.

Safety and accessibility (BWR 4)

Essential characteristic	Performance
Characteristic resistance for tension and shear loads	See appendix, especially Annex C1 to C4
Characteristic resistance for bending moments	See appendix, especially Annex C1
Displacements under shear and tension loads	See appendix, especially Annex C1
Anchor distances and dimensions of members	See appendix, especially B2 to B3

Safety in case of fire (BWR 1)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Singed for and on behalf of the manufacturer by:

Dipl.-Ing. Massimo Pirozzi Head of Engineering

p.p.a. Marino Diropi

Olten, 2018-26-07

This DoP Has been prepared in different languages. In case there is a dispute on the interpretation the English version shall always prevail. The Appendix includes voluntary and complementary information in English language exceeding the (language as neutrally specified) legal requirements.

Mungo Befestigungstechnik AG Bornfeldstrasse 2 CH-4603 Olten · Switzerland Phone +41 62 206 75 75 Fax +41 62 206 75 85

Legend

- h_{min} = minimum thickness of structural part
- h_1 = depth of drilled hole to deepest point
- t_{tol} = thickness of equalizing layer or non-load-bearing coating (non-structural layer)
- t_{fix} = thickness of fixture (including non-load-bearing coating)
- h_{nom} = overall anchor embedment depth in the base material

Mungo MQL Universal Frame Plug

Product description Installed condition Annex A 1

Page 6 of European Technical Assessment ETA-11/0008 of 28 April 2016

English translation prepared by DIBt

Table A1: Dimensions

Anchor	Plastic sleeve								Special screw ²⁾		
type	h _{nom} [mm]	d _{nom} [mm]	t _{fix,min} [mm]	t _{fix,max} [mm]	l _d [mm]	d _{kd} [mm]	d _k [mm]	d _s [mm]	l _G [mm]	I _{S,min} [mm]	
MQL 10 ¹⁾	70	10	10	330	80 - 400	2	18	7	77	85	

¹⁾ For description of the anchor the length of the plastic sleeve I_d is indicated additionally, e.g. for I_d=140 mm: anchor MQL 10/ 140
 ²⁾ The screw length I_s is 5 mm larger than the length of the plastic sleeve I_s, so the screw penetrates the screw penetrates

the appropriate plastic sleeve correctly.

Table A2: Materials

Name	Material
Plastic sleeve	Polyamide, PA6 colour orange
Special screw	steel 6.8, zinc plated ≥ 5µm acc. to EN ISO 4042:2001-01 blue passivated
Special sciew	stainless steel A4 according to EN 10088-3:2014 material number 1.4401, 1.4301, 1.4571

Mungo MQL Universal Frame Plug

Product description Dimensions and materials Annex A 3

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads
 - Multiple fixing of non-structural applications

Table B1: Application categories in terms of base material and temperature range

Applic	ation categories	See	Anchor type				
		Annex	MQL 10				
Base r	naterial ³⁾						
а	Reinforced or unreinforced normal weight concrete ³⁾ with strength classes≥ C12/15 acc. to EN 206-1:2014	C 1	~				
b	Solid brick masonry ¹⁾²⁾³⁾	C 2	✓				
С	Hollow brick masonry ²⁾³⁾	C 3 + C 4	✓				
d	Autoclaved aerated concrete	-	-				
Tempe	erature range						
Tb	Tb $ \begin{array}{l} \text{min } T = -20^{\circ}\text{C to } +80^{\circ}\text{C (maximum short term temperature } +80^{\circ}\text{C and maximum long term temperature } +50^{\circ}\text{C}) \end{array} $						
1) Note	The characteristic resistance is also valid for larger brief, since and higher compression	. atua natla					

⁷ Note: The characteristic resistance is also valid for larger brick sizes and higher compressive strength.

²⁾ Clay bricks and calcium silicate bricks and mortar strength class≥ M2,5 acc. to EN 998-2:2010

³⁾ For other base materials of the use categories a, b or c the characteristic resistance of the anchor may be determined by job site tests according to ETAG 020, Annex B, Edition March 2012.

Use conditions (environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel).
- The specific screw made of galvanised steel may also be used in structures subject to external atmospheric exposure, if the area of the head of the screw is protected against moisture and driving rain after mounting of the fixing unit in this way, that intrusion of moisture into the anchor shaft is prevented. Therefore there shall be an external cladding or a ventilated rainscreen mounted in front of the head of the screw and the head of the screw itself shall be coated with a soft plastic, permanently elastic bitumen-oil-combination coating (e. g. undercoating or body cavity protection for cars).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel).
 Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- The anchorages are to be designed in accordance with the ETAG 020, Annex C, Edition March 2012, under the responsibility of an engineer experienced in anchorages and masonry work.
- Verifiable calculation notes and drawings shall be prepared taking account of the loads to be anchored, the nature and strength of the base materials and the dimensions of the anchorage members as well as of the relevant tolerances. The position of the anchor is indicated on the design drawings.
- Fasteners are only to be used for multiple use for non-structural application according to ETAG 020, Edition March 2012.

Installation:

- Hole drilling by the drill modes according to Annex C1 C4
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Installation temperature from -20°C to +50°C
- · Exposure to UV due to solar radiation of the anchor not protected ≤ 6 weeks

Mungo MQL Universal Frame Plug

Intended use Specifications

Deutsches Institut für Bautechnik

able B2: Installation parameters									
Anchor type	MQL 10								
Base material			Concrete solid brick hollow brick						
Overall anchor embedment depth in the base material ¹⁾²⁾	h _{nom}	[mm]	≥ 70						
Nominal drill hole diameter	d _{nom}	[mm]	10						
Cutting diameter of drill bit	d _{cut}	[mm]	≤ 10,45						
Depth of drill hole to deepest point ¹⁾	h ₁	[mm]	80						
Diameter of clearance hole in fixture	d _f	[mm]	10,5						

¹⁾ see Annex A 1

²⁾ In masonry made of hollow or perforated bricks the influence of h_{nom} > 70 mm has to be be determined by job site tests according to ETAG 020, Annex B.

Table B3:	Minimum thickness of membe	r, edge distance and spacing in concret
Table DJ.	Willing and the solution of th	, euge distance and spacing in concre

Anchor type	Strength category	Minimum thickness of member	Characteristic edge distance	Characteristic spacing	Minimum edge distance	Minimum spacing
		h _{min}	C _{cr,N}	S _{cr,N}	C _{min}	s _{min}
		[mm]	[mm]	[mm]	[mm]	[mm]
MQL 10	C12/15	100	140	140	70	140
	≥C16/20	100	100	100	50	100

Fixing points with spacing $a \le s_{cr,N}$ are considered as a group with a max. characteristic resistance $N_{Rk,p}$ acc. to Table C3. For a spacing $a > s_{cr,N}$ the anchors are considered as single anchors, each with a characteristic resistance $N_{Rk,p}$ acc. to Table C3.

Scheme of spacing and edge distances in concrete

Mungo MQL Universal Frame Plug

Intended use

Installation parameters, edge distance and spacing in concrete

	See	Minimum	Minimum	Characteristic	Minimum spacing		
Base material	Annex	member thickness	edge dis- tance	spacing	vertical to edge	parallel to edge	
		h _{min}	C _{min}	a _{min}	S _{1,min}	S _{2,min}	
		[mm]	[mm]	[mm]	[mm]	[mm]	
Solid clay brick Mz 20/2,0 - 2DF	C 2	115					
Solid calcium silicate bricks KS 12/2,0 - 2DF	C 2	115					
Hollow clay brick HLz 12/1,2 - 10DF	C 3	240	100	max (250 mm, s _{1,min} , s _{2,min})	200	400	
Ital. Hollow clay brick Mattone	C 3	240					
Calcium silicate hollow brick KSL 12/1,2-10DF	C 4	240					

Scheme of spacing and edge distances in masonry

Mungo MQL Universal Frame Plug

Intended use

Edge distance and spacing in masonry

Mungo MQL Universal Frame Plug

Intended use Installation instructions in concrete and solid brick

Mungo MQL Universal Frame Plug

Intended use Installation instructions in hollow brick Annex B 5

Electronic copy of ETA by DIBt: ETA-11/0008

Table C1: Characteristic bending resistance of the special screw

	MQL 10		
	Zinc plated steel	Stainless steel	
$M_{Rk,s}$	[Nm]	15,3	17,8
γ _{Ms} ¹⁾	[-]	1,25	1,56
	M _{Rk,s} γ _{Ms} ¹⁾	M _{Rk,s} [Nm] γ _{Ms} ¹⁾ [-]	MQ Zinc plated steel M _{Rk,s} [Nm] γ _{Ms} ¹⁾ [-]

¹⁾ In absence of other national regulations.

Table C2: Characteristic resistance of the screw

Anchor type		MQL 10		
Failure of expansion element (special screw)			Zinc plated steel	Stainless steel
Characteristic tension resistance	N _{Rk,s}	[kN]	17,0	19,8
Partial safety factor for $N_{Rk,s}$	γ _{Ms} 1)	[-]	1,5	1,87
Characteristic shear resistance	$V_{Rk,s}$	[kN]	8,5	8,5
Partial safety factor for $V_{Rk,s}$	γ _{Ms} 1)	[-]	1,25	1,56

¹⁾ In absence of other national regulations.

Table C3: Characteristic resistance in in concrete (use category a)

Anchor type			MQL 10
Drilling method			Hammer drilling
Pullout failure (plastic sleeve)			
concrete C12/15			
Characteristic resistance 50°C ¹⁾ / 80°C ²⁾	N _{Rk,p}	[kN]	1,5
concrete ≥ C16/20			
Characteristic resistance 50°C ¹⁾ / 80°C ²⁾	N _{Rk,p}	[kN]	2,5

¹⁾ Maximum long term temperature

²⁾ Maximum short term temperature

Table C4: Displacements¹⁾ under tension and shear load in concrete and masonry

Tension load			Shear load			
Anchor type	F ²⁾	δ_{N0}	δ _{N∞}	F ²⁾	δ_{V0}	δγ∞
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
MQL 10	1,0	0,06	0,12	4,5	3,0 ³⁾	4,5 ³⁾

¹⁾ Valid for all temperature ranges.
 ²⁾ Intermediate values by linear interpolation.
 ³⁾ The displacements under shear load may increase in case of an annular gap in the fixture.

Mungo MQL Universal Frame Plug

Performances

Characteristic resistance in concrete, characteristic resistance of the screw displacements under tension and shear load in concrete and masonry

Annex C 1

Page 14 of European Technical Assessment ETA-11/0008 of 28 April 2016

English translation prepared by DIBt

Clay solid brick a	cc. to EN 771-1:2011 / DIN 105-100:2012-0	≥ρ[kg/dm³]	2	MQL 10
Clay solid brick a	cc. to EN 771-1:2011 / DIN 105-100:2012-0	/		
	31 m	1		
Mz 20/2 0	2DF: 240	10 / 2,0	н	2,0
WZ 2072,0	115 113	20 / 2,0	н	3,0
Calcium silicate	olid brick acc. to EN 771-2:2011 / DIN V 10	6:2005-10		
KSV 12/2 0	24 2DF: 240	10 / 2,0	н	1,5
		20 / 2,0	н	2,5
⁾ H = Hammer dril	ng; R = Rotary drilling			
go MQL Univers	al Frame Plug			
ormances			1	Annex C 2

Electronic copy of ETA by DIBt: ETA-11/0008

Page 15 of European Technical Assessment ETA-11/0008 of 28 April 2016

English translation prepared by DIBt

ble C6: Characteristic resistance for MQL 10 in hollow or perforated masonry (use category c) – clay brick					
Base material	(Min. com- pressive strength f₅ [N/mm²]	Drilling method ¹⁾	Characteristic resistance F _{Rk} [kN]	
				bulk density ≥ρ[kg/dm³]	MQL 10
Clay brick with p	erforation acc	c. to EN 771-1:2011 / DIN 105-100:2012-01			
HLz 12/1,2	10DF: 300	24	12 / 1,2	R	1,2 ²⁾
ΠLZ 12/1,2	240		20 / 1,2	R	2,0 ²⁾
Ital. perforated brick Mattone	300: 240 195		10 / 0,84	R	0,9 ²⁾
¹⁾ H = Hammer dri ²⁾ Shear load with	lling; R = Rotai lever arm is no	ry drilling ot allowed.		1	
go MQL Univer	sal Frame Pl	ug			
ormances				_	Annex C 3

Base material	Geometry (format/ length/ width/ height) [mm]	Min. com- pressive strength f _b [N/mm²]	Drilling method ¹⁾	Characteristic resistance F _{Rk} [kN]
		bulk density ≥ρ[kg/dm³]		MQL 10
Calcium silicate b	prick with perforation acc. to EN 771-2:2011 / DIN V 10	06:2005-10	1 1	
KSI 12/1 4		8 / 1,4	н	1,2 ²⁾
		12 / 1,4	н	2,0 ²⁾
¹⁷ H = Hammer drill ²⁾ Shear load with I	ing; R = Rotary drilling ever arm is not allowed.			
qo MQL Univers	al Frame Plug			

Electronic copy of ETA by DIBt: ETA-11/0008