

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0068 of 16 March 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

MB/ MBR

Plastic anchor for multiple use in concrete and masonry for non-structural applications

Mungo Befestigungstechnik AG Bornfeldstrasse 2 4603 OLTEN SCHWEIZ

Werk 1 Werk 2

Werk 3

Werk 4

Werk 5

16 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Plastic anchors for multiple use in concrete and masonry for non-structural applications", ETAG 020, Edition March 2012, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-15/0068 English translation prepared by DIBt

Page 2 of 16 | 16 March 2015

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

8.06.04-165/14

European Technical Assessment ETA-15/0068 English translation prepared by DIBt

Page 3 of 16 | 16 March 2015

Specific Part

1 Technical description of the product

The MB/ MBR is a plastic anchor consisting of a plastic sleeve made of polyamide and an accompanying specific screw of galvanised steel or of stainless steel.

The plastic sleeve is expanded by screwing in the specific screw which presses the sleeve against the wall of the drilled hole.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchors of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

The essential characteristics regarding mechanical resistance and stability are included under the Basic Works Requirement Safety in use.

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A 1
Resistance to fire	See Annex C 1

3.3 Hygiene, health and the environment (BWR 3)

Not applicable

3.4 Safety and accessibility (BWR 4)

Essential characteristic	Performance
Characteristic resistance for tension and shear loads	See Annex C 1 – C 4
Characteristic resistance for bending moments	See Annex C 1
Displacements under shear and tension loads	See Annex C 1
Anchor distances and dimensions of members	See Annex B 2 – B 3

3.5 Protection against noise (BWR 5)

Not applicable

3.6 Energy economy and heat retention (BWR 6)

Not applicable

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

8.06.04-165/14

European Technical Assessment ETA-15/0068 English translation prepared by DIBt

Page 4 of 16 | 16 March 2015

3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

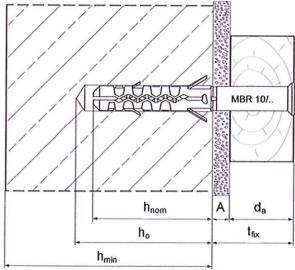
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision 97/463/EC of the Commission of 27 June 1997 (Official Journal of the European Communities L 198 of 25.07.1997, p. 31–32) the system of assessment and verification of constancy of performance (AVCP) (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Plastic anchors for use in concrete and masonry	For use in systems, such as façade systems, for fixing or supporting elements which contribute to the stability of the systems	_	2+

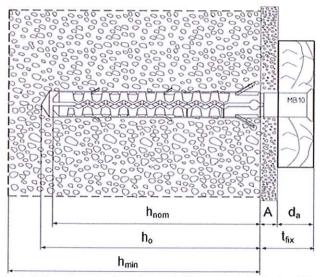
Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 16 March 2015 by Deutsches Institut für Bautechnik

Andreas Kummerow p.p. Head of Department

*beglaubigt:*Aksünger



Installed condition for MB 10 and MBR 10

 h_{nom} A d_a ho t_{fix} h_{min}

Installation in concrete and solid brick (e.g. MBR 10) Installation in hollow brick (e.g. MB 10)

Installation in autoclaved aerated concrete (only for MB 10)

Legend

h_{min} = thickness of structural part

d_a = thickness of attached part h_{nom} = embedment depth

ho = drill hole depth

= tolerance compensation

= thickness of fixture

MB/ MBR **Product description** Annex A 1 Installed condition

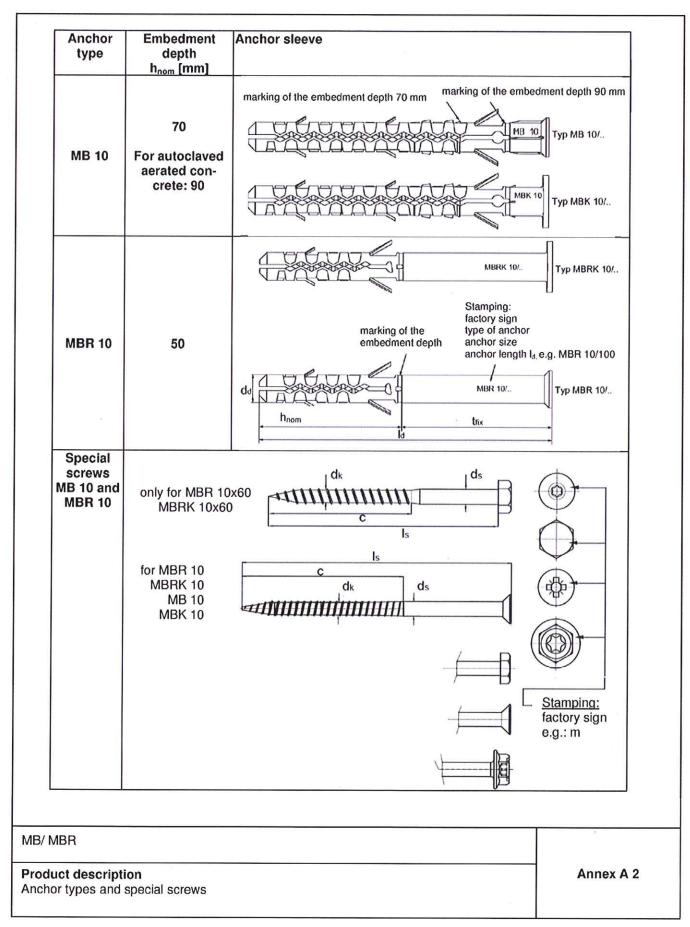


Table A1: Dimensions

Anchor 1)		Plastic sl	eeve	Sp	ecial screw	, 2)3)
	d _d [mm]	h _{nom} [mm]	l _d [mm]	d _s [mm]	d _k [mm]	c [mm]
MBR 10/ 60 MBRK 10/ 60	10	50	60	7	6,1	50
MBR 10/ xx MBRK 10/ xx	10	50	80, 100, 120, 140, 160, 200, 240	7	6,1	75
MB10/ xx MBK10/ xx	10	70/ 90 ⁴⁾	80, 100, 120, 140, 160, 200, 240, 280, 300	7	6,1	75

- 1) For the anchor's description the plastic sleeve's length I_d is indicated additionally, e.g. for I_d=140 mm: anchor MBR 10/140.
- 2) The screw's length I_s amounts 5 mm longer than the plastic sleeve's length I_s, so the fastener penetrates correctly the appropriate plastic sleeve.
- 3) For attached metal parts the fastener with hexagonal drive may be used in the version zinc plated. See section 1.
- 4) When applied in autoclaved aerated concrete an embedment depth of 90 mm has to be used.

Table A2: Materials

Name	Material
Plastic sleeve	Polyamide, PA6, colour orange
Chaoifia aaraw	steel 6.8 (f_{uk} = 600 N/mm ² , f_{yk} = 480 N/mm ²), zinc plated \geq 5 μ m acc. to EN ISO 4042:2001-01
Specific screw	non-corrosive steel A4 EN 10088-3:2014 mit f_{uk} = 700 N/mm ² , f_{yk} = 450 N/mm ²

MB/ MBR	
Product description Dimensions and materials	Annex A 3

Specifications of intended use

Anchorages subject to:

· Static and quasi-static loads

· Multiple fixing of non-structural applications

Table B1: Application categories in terms of base material and temperature range

Applica	tion categories	See	Anche	or type
	-	annex	MB 10	MBR 10
Base m	aterial ³⁾			
а	Reinforced or unreinforced normal weight concrete with strength classes≥ C12/15 acc. to EN 206-1:2014	C 1	✓	✓
b	Solid brick masonry 1)2)	C 2	✓	✓
С	Hollow brick masonry 2)	C3+C4	✓	✓
d	Autoclaved aerated concrete	C 4	✓	-
Temper	ature range			
Tb	min T = -20°C to +80°C (maximum short term temperature maximum long term temperature +50°C)	e +80°C and	✓	✓

¹⁾ Note: The characteristic resistance is also valid for larger brick sizes and higher compressive strength.

Use conditions (environmental conditions):

- · Structures subject to dry internal conditions (zinc coated steel, stainless steel).
- The specific screw made of galvanised also may be used in structures subject to external atmospheric exposure, if the area of the head of the screw is protected against moisture and driving rain after mounting of the fixing unit in this way, that intrusion of moisture into the anchor shaft is prevented. Therefore there shall be an external cladding or a ventilated rainscreen mounted in front of the head of the screw and the head of the screw itself shall be coated with a soft plastic, permanently elastic bitumen-oil-combination coating (e. g. undercoating or body cavity protection for cars).
- Structures subject to external atmospheric exposure (including industrial and marine environment)
 and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel).
 Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash
 zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- The anchorages are to be designed in accordance with the ETAG 020, Edition March 2012, Annex C under the responsibility of an engineer experienced in anchorages and masonry work.
- Verifiable calculation notes and drawings shall be prepared taking account of the loads to be anchored, the
 nature and strength of the base materials and the dimensions of the anchorage members as well as of the relevant tolerances. The position of the anchor is indicated on the design drawings.
- Fasteners are only to be used for multiple use for non-structural application according to ETAG 020, Edition March 2012.

Installation:

- Hole drilling by the drill modes according to Annex C1 C4
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site acc. to annex B 4 and B 5.
- Installation temperature from -20°C to +50°C
- Exposure to UV due to solar radiation of the anchor not protected ≤ 6 weeks

MB/ MBR	
Intended use Specifications	Annex B 1

²⁾ Clay bricks, calcium silicate bricks and concrete - or lightweight concrete blocks and mortar strength class≥ M2,5 acc.

³⁾ For other base materials of the use categories b, c and d the characteristic resistance of the anchor may be determined by job site tests according to ETAG 020, Annex B, Edition March 2012.

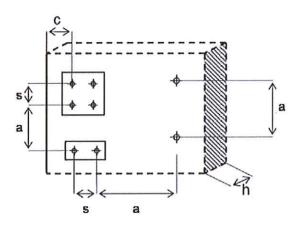
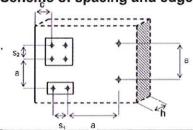

Anchor type			MBR 10	MB 10	MB 10
Base material			Concrete, solid brick and hollow brick	Concrete, solid brick and hollow brick	autoclaved aerat- ed concrete (AAC)
Embedment depth	h _{nom}	[mm]	50	70	90
Nominal drill hole diameter	d _{nom}	[mm]	10	10	9
Cutting diameter of drill bit	d _{cut} ≤	[mm]	10,45	10,45	9,45
Depth of drill hole	h _o	[mm]	60	80	100
Diameter of clearance hole in fixture	d _f	[mm]		10,5	
max. thickness of member	max t _{fix}	[mm]	190	230	210
min, thickness of member	min t _{fix}	[mm]		0	

Table B3: Minimum thickness of member, edge distance and spacing in concrete

I UNIO DOI		Miles of monitori	cago alotalios	and obsering in	00.10.00	
Anchor	Strength	Minimum thick-	Characteristic	Characteristic	Minimum edge	Minimum
type	category	ness of member	edge distance	spacing	distance	spacing
		h _{min}	C _{cr,N}	S _{cr.N}	C _{min}	S _{min}
		[mm]	[mm]	[mm]	[mm]	[mm]
MB 10	C12/15	100	70	75	70	70
	≥C16/20	100	50	55	50	50
MBR 10	C12/15	100	70	75	70	70
	≥C16/20	100	50	55	50	50

Fixing points with a spacing a $\leq s_{cr,N}$ are considered as a group with a max. characteristic resistance $N_{Rk,p}$ acc. to Table C3. For a spacing a $> s_{cr,N}$ the anchors are considered as single anchors, each with a characteristic resistance $N_{Rk,p}$ acc. to Table C3.

Scheme of spacing and edge distances


MB/ MBR	
Intended use Installation parameters, edge distance and spacing in concrete	Annex B 2

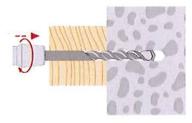
Anchor	Base material	See	Minimum	Minimum	Minimum	spacing
type		Annex	thickness of	edge dis-	vertical	parallel
5/52			structural part	tance	to edge	to edge
			h _{min}	C _{min}	S _{1,min}	S _{2,min}
			[mm]	[mm]	[mm]	[mm]
MB 10	Clay brick Mz 12-1,8-NF (DIN 105-100:2012-01)	C 2	112	120	240	480
MB 10	KSV 12-1,8-2DF (DIN V 106:2005-10)	C 2	115	120	240	480
MB 10 MBR 10	KS-Ratio flat element 20-2,0-8DF (DIN V 106:2005-10)	C 2	115	100	200	400
MB 10	Light concrete solid brick Vbl 2-0,8-2DF (DIN V 18152-100:2005-10)	C 2	115	120	240	480
MB 10	Light concrete –flat element PE12-0,5 Z-17.1-699 from 09.10.2012	C 2	115	120	240	480
MBR 10	Liapor solid brick	C 2	115	100	200	400
MB 10 MBR 10	ROGGWILL *QS/SZ* CE 21-12-13 SWISSMODUL 300x150x190	C 3	150	150	300	600
MBR 10	Block 37/17,5 brickyard 87727 Klosterbeu- ren, Germany Z-17.1-1038 from 16.07.2010	C 3	175	185	370	740
MB 10	Plan 30/24 brickyard 87727 Klosterbeu- ren, Germany Z-17.1-993 from 09.07.2010	C 3	240	150	300	600
MB 10	Calcium silicate hollow brick KSL 12-1,2-10DF (DIN V 106:2005-10)	C 3	240	150	300	600
MB 10 MBR 10	KS-Ratio flat element 12-1,6-8DF (DIN V 106:2005-10)	C 3	115	100	200	400
MBR 10	Concrete hollow block Hbn 6-1,2 8DF (DIN V 18153-100:2005-10)	C 4	115	100	200	400
MB 10	autoclaved aerated con- crete (AAC) acc. to EN 771-3:2011	C 4	150	125	250	500
MB 10	Reinforced autoclaved aer- ated concrete acc. to EN 12602:2013	C 4	150	125 (150 ¹⁾)	250 (300 ¹⁾)	500 (600 ¹⁾)

^{12602:2013} 1) For slabs of width ≤ 700 mm

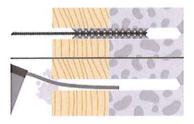
Scheme of spacing and edge distances in solid and hollow brick and AAC

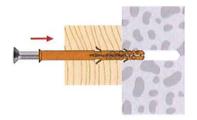
 $a \ge max (250 \text{ mm}; s_{1,min}; s_{2,min})$

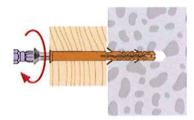
MB/ MBR

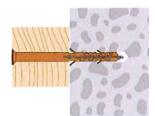

Intended use

Installation instructions in concrete and solid brick


Annex B 3


Installation instructions in concrete and solid brick:


Drilling hole by hammer drilling
Drill hole diameter and drill hole depth according
to table B2
Temperature of base material ≥ -20°C

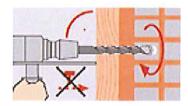

Pre-cleaning the drill hole with a brush, then hole-blowing with a pump

Setting the anchor with the preassembled fastener through the part to be fixed

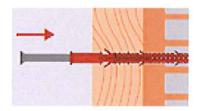
Push the anchor till the waistband contacts the part to be fixed, then fix the part with screw

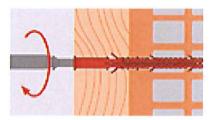
Tightening the fastener till head contact

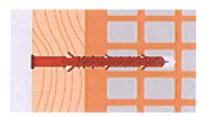
MB/ MBR


Intended use

Installation instructions in concrete and solid brick


Annex B 4


Installation instructions in hollow brick and autoclaved aerated concrete (AAC):


Drilling hole without hammering
Drill hole diameter and drill hole depth according
to table B2
Temperature of base material ≥ -20°C

Setting the anchor with the preassembled fastener through the the part to be fixed

Push the anchor till the waistband contacts the part to be fixed, then fix the part with screw

Tighten the fastener till head contact

MB/ MBR

Intended use

Installation instructions in hollow brick and autoclaved aerated concrete

Annex B 5

Table C1: Characteristic bending resistance of the special screw

Steel type		Steel zinc plated	Stainless steel	
Anchor type		MBR 10 MB 10	MBR 10 MB 10	
Characteristic bending resistance M _{Rk,s}	[Nm]	15,3	17,8	
Partial safety factor $\gamma_{Ms}^{(1)}$	[-]	1,25	1,56	

¹⁾ In absence of other national regulations.

Table C2: Characteristic resistance of the screw

Steel type			Steel zin	c plated	Stainless steel	
Anchor type			MBR 10	MB 10	MBR 10	MB 10
Total anchor length in base material	h _{nom}	[mm]	50	70	50	70
Failure of expansion element (special screw)					_	
Characteristic tension resistance	N _{Rk,s}	[kN]	17,0		19,8	
Partial safety factor for N _{Rk,s}	γ _{Ms} 1)	[-]	1,5		1,87	
Characteristic shear resistance	V _{Rk,s}	[kN]	8,5		8,5	
Partial safety factor for V _{Rk,s}	γ _{Ms} 1)	[-]	1,25		1,56	

¹⁾ In absence of other national regulations.

Table C3: Characteristic resistance in concrete (use category a)

				Z					
Steel type			c plated	Stainless steel					
		MBR 10	MB 10	MBR 10	MB 10				
h _{nom}	[mm]	50	70	50	70				
h _{nom} [mm] 50 70 50 70 70 50 70 50 70 50 70 50 70 50 70 50 70 50 70 50 70 50 70 50 70 50 70 50 70 50 70 50 70 50 70 50 70 7									
$N_{Rk,p}$	[kN]	0,9	1,5	0,9	1,5				
γ _{Mc} 1)	[-]	1,8							
$N_{Rk,p}$	[kN]	1,5	2,5	1,5	2,5				
γ _{Mc} 1)	[-]	1,8							
	N _{Rk,p} 1) γ _{Mc} N _{Rk,p}	N _{Rk,p} [kN] γ _{Mc} [-] N _{Rk,p} [kN]	MBR 10 50 50 50 1,5 1,5 1,5 1,5 1,5 1	h _{nom} [mm] 50 70 hammer	MBR 10 MBR 10 MBR 10 MBR 10 NBR 10				

¹⁾ In absence of other national regulations.

Table C4: Displacements¹⁾ under tension and shear load in concrete and masonry

	Embed- ment depth	Tension load				Shear load	
Anchor type	h _{nom}	F 2)	δ_{N0}	δ _N ⊷	F 2)	δ_{V0}	δ _{V∞}
	[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
MB 10	70 AAC: 90	1,0	0,2	0,4	4,8	3,4 ³⁾	5,1 ³⁾
MBR 10	50	0,8	0,2	0,4	4,8	3,4 3)	5,1 ³⁾

¹⁾ Valid for all temperature ranges.

Table C5: Characteristic values under fire exposure in concrete C20/25 to C50/60 in any load direction, no permanent centric tension load and without lever arm.

Anchor type	Fire resistance class	F _{Rk}	
MB 10 and MBR 10	R 90	≤ 0,8 kN	

MB/ MBR	. 8:
Performances	Annex C 1
Characteristic resistances, displacements under tension and shear load in concrete and masonry	

²⁾ Maximum long term temperature

³⁾ Maximum short term temperature

²⁾ Intermediate values by linear interpolation.

³⁾ The displacements under shear load can increase in case of annular gap in fixture.

Base material (supplier)		Geometry (format/ length/ width/ height) [mm]	Min. com- pressive strength fb [N/mm²] bulk density		Charac resistanc	
		te	≥ ρ [kg/dm³]	ē	MBR 10	MB [*]
Solid brick acc	. to EN	771-1:2011	·			
Clay brick Mz 12-1,8-NF (DIN 105-	NF 237 112		10 / 1,8	Н	-	1,5
100:2012-01)	71	237	20 / 1,8	Н	1-	2,0
Calcium silicat	e solid	brick acc. to EN 771-2:2011				
KSV 12-1,8- 2DF (DIN V 106:	2DF 240	<u> </u>	10 / 1,8	н	-	1,5
(DIN V 106: 2005-10)	115 113	240	20 / 1,8	н	•	2,0
KS-Ratio-flat element 20-2,0-8DF	8DF 498	99 04 04 04 04 04 04 04 04 04 04 04 04 04	10 / 2,0	Н	2,0	1,5
(DIN V 106: 2005-10)	115 248	38 Tiefé 75 mm	20 / 2,0	н	2,5	2,0
Solid brick ma	de of co	oncrete (with dense and lightweight aggregates) a		3:2011		
Lightweight	205	2	2 / 0,5	Н	•	0,3
concrete solid brick-	2DF 240		4 / 0,8	Н	-	0,4
Vbl 2-0,8-2DF (DIN 18152-	115 113		10 / 1,2	Н	-	1,2
100:2005-10)		243	20 / 2,0	I	-	1,5
Lightweight concrete flat element	997 240	1007 235 (235) 235 (235)	2 / 0,5	Н	u u	0,3
PE12-0,5 Z-17.1-699 from 09.10.2012	623	10 997	4 / 0,8	Н	-	0,4
Liapor solid brick	240 115 95		10 / 1,2	Н	0,9	
		absence of other national regulations)		γ̃Mm	2,	5
	Irilling; F	R = Rotary drilling				
MBR						

Table C7: Characteristic resistance for MBR 10 and MB 10 in hollow or perforated masonry (use category c) - clay brick and calcium silicate brick, lightweight concrete blocks Min. com-Drilling thod Characteristic pressive Geometry resistance F_{Rk} [kN] Base material strength fb (format/ length/ width/ height) (supplier) [N/mm²] [mm] bulk density **MBR 10** MB 10 ≥ p [kg/dm³] Clay brick with perforation acc. to EN 771-1:2011 **ROGG WILL** *QS/SZ* 300 ROGGWILL 0,75 2) 0.4 2) 150 25 / 0,80 R CE 21-12-13 190 SWISSMODUL 300x150x190 Block 37/17,5 brickyard 373 87727 Kloster-0,62) 12/1,4 R 175 beuren, Ger-238 many Z-17.1-1038 from 16.07.2010 Plan 30/24 brickyard 308 87727 Kloster-0,5 2) 12/1,2 240 R beuren, Ger-249 many Z-17.1-993 from 09.07.2010 Calcium silicate brick with perforation acc. to EN 771-1:2011 Calcium silicate hollow 10DF brick -300 0,4 2) 12/1,2 KSL 12-1,2-R 240 10DF 238 (DIN V 106: 2005-10) KS-Ratio flat 8DF element 498 12-1,6-8DF 12/1.6 R 0.75 1,2 115 (DIN V 106: 248 2005-10) Partial safety factor (in absence of other national regulations) 2.5 YMm ¹⁾ H = Hammer drilling; R = Rotary drilling; ²⁾ shear load with lever arm is not allowed. MB/ MBR Annex C 3 Performances Characteristic resistances in hollow masonry

Table C8: Characteristic resistance for MBR 10 and MB 10 in hollow masonry (use category c) – lightweight concrete blocks

Base material (supplier)	lier) (format/ length/ width/ height)		Drilling thod	Characteristic resistance F _{Rk} [kN]	
(oupplier)	[mm]	[N/mm²] bulk density ≥ ρ [kg/dm³]	⊅me-	MBR 10	MB 10
Concrete maso	nry units (with dense and lightweight aggregates) acc. t	o EN 771-3:201	1		
Concrete hol- low block Hbn 6-1,2 8DF (DIN V 18153- 100:2005-10)	8DF 495 115 238	6/1,2	R	0,3	9
Partial safety fac	tor (in absence of other national regulations)		γMm	2	5

¹⁾ H = Hammer drilling; R = Rotary drilling

Table C9: Characteristic resistance for MB 10 in [kN] in autoclaved aerated concrete / AAC (use category d)

Base material (supplier)	Geometry (format/ length/ width/ height)	Min. com- pressive strength f _b [N/mm²]	Drilling thod	Characteristic resistance F _{Rk} [kN]
,,	[mm]	bulk density ≥ ρ [kg/dm³]	me-	MB 10
Autoclaved aer	ated concrete masonry units acc. to EN 771-4 :20	11		
440	250	2,0 / 0,35	R	0,4
AAC	150 240	5,2 / 0,55	R	1,5
Reinforced aut	oclaved aerated concrete acc. to EN 12602:2013		•	
440	250	3,0 / 0,35	R	0,3
AAC	150 - 240	5,2 / 0,55	R	0,9
Partial safety fac	ctor (in absence of other national regulations)		Умаас	2,0

1) H = Hammer drilling; R = Rotary drilling

Annex C 4
•