

INSTYTUT TECHNIKI BUDOWLANEJ PL 00-611 WARSZAWA ul. Filtrowa 1 tel.: (+48 22) 825-04-71 (+48 22) 825-76-55 fax: (+48 22) 825-52-86 www.itb.pl

Member of

E TA*

European Technical Assessment

ETA-17/0806 of 29/06/2020

General Part

Technical Assessment Body issuing the European Technical Assessment

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Instytut Techniki Budowlanej

R-LX

Concrete screw for use in cracked and uncracked concrete

RAWLPLUG S.A. ul. Kwidzyńska 6 51-416 Wrocław Poland

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Manufacturing Plant no. 2

16 pages including 3 Annexes which form an integral part of this assessment

European Assessment Document (EAD) 330232-00-0601 "Mechanical fasteners for use in concrete" and 330011-00-0601 "Adjustable concrete screw"

ETA-17/0806 issued on 29/12/2017

This European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

Specific Part

1 Technical description of the product

The R-LX concrete screw is an anchor made of heat treated and zinc plated (ZP) or zinc flaked (ZF) steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into a concrete member while setting. The anchorage is characterized by mechanical interlock in the special thread.

The description of the product is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document (EAD)

The performances given in Section 3 are only valid if the anchors are used in compliance with the specifications and conditions given in Annex B.

The performances given in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer or the Technical Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Performance of the product

3.1.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasi- static loading	See Annex C1 and C2
Displacements under tension and shear loads	See Annex C2
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C3 and C4

3.1.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchors satisfy requirements for Class A1
Resistance to fire	See Annex C5

3.1.3 Safety and accessibility in use (BWR 4)

For Basic Requirement Safety and accessibility in use are included under Basic Requirement Mechanical resistance and stability (BWR 1).

3.2 Methods used for the assessment

The assessment of the products has been made in accordance with EAD 330232-00-0601 and EAD 330011-00-0601.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision 96/582/EC of the European Commission the system 1 of assessment and verification of constancy of performance applies (see Annex V to Regulation (EU) No 305/2011).

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document (EAD)

Technical details necessary for the implementation of the AVCP system are laid down in the control plan which is deposited at Instytut Techniki Budowlanej.

For type testing the results of the tests performed as part of the assessment for the European Technical Assessment shall be used unless there are changes in the production line or plant. In such cases the necessary type testing has to be agreed between Instytut Techniki Budowlanej and the notified body.

Issued in Warsaw on 29/06/2020 by Instytut Techniki Budowlanej

Anna Panek, MSc Deputy Director of ITB

Anchor size			R-LX-05	R-LX-06	R-LX-08	R-LX-10	R-LX-12	R-LX-14
Thread size	d	mm	6,2	7,5	9,9	12,4	14,9	17,4
Length of anchor	L	mm	45 - 240	45 - 240	60 - 240	60 - 240	75 - 240	80 - 240
Nominal hole diameter	do	mm	5	6	8	10	12	14
Tip chamfer	hs	mm	2,5	3	4	4,5	6	6
Pitch	ht	mm	4,2	5	6,7	8,3	10	11,6
Material: carbon steel	f _{uk}	N/mm ²	1300	1250	1200	1050	1000	1020
Material. Carbon steel	f _{yk}	N/mm ²	1150	1100	1050	950	900	800
Coating				Zinc Plat	ed (ZP ≥ 5 µm)	or Zinc Flaked	(ZF ≥ 5 µm)	

Table A2: Dimensions and materials for R-LX-E and R-LX-I

Anchor size			R-LX-05	R-LX-06	R-LX-08	R-LX-10
Thread size	d	mm	6,2	7,5	9,9	12,4
Length of anchor R-LX-E	L	mm	-	55 - 240	60 - 240	65 - 240
Length of anchor R-LX-I	L	mm	45 - 75	40 -150	51 - 150	56 - 160
Nominal hole diameter	do	mm	5	6	8	10
Tip chamfer	hs	mm	2,5	3	4	4,5
Pitch	ht	mm	4,2	5	6,7	8,3
External thread (R-LX-E)		-	-	M8	M10	M12
Internal thread (R-LX-I)		-	M6	M6, M8, M10, M8/M10	M12	M12, M16
Material: carbon steel	f _{uk}	N/mm ²	1300	1250	1200	1050
	f _{yk}	N/mm ²	1150	1100	1050	950
Coating			Zinc Plate	ed (ZP ≥ 5 μm) or Zir	nc Flaked (ZF ≥ 5 μm)

_h, _ h, IN THE σ Lg Sw

R-LX

Product description Dimensions and materials Annex A2

Intended use

Anchorages subject to:

- Static and quasi-static loads: all sizes and all embedment depth.
- Anchorages with requirements related to resistance to fire: all sizes and all embedment depths.
- Seismic performance categories C1 and C2: R-LX-08, R-LX-10 and R-LX-14.

Base material:

- Reinforced or unreinforced normal weight concrete with strength class C20/25 to C50/60 according to EN 206.
- Uncracked and cracked concrete: all sizes.

Use conditions (environmental conditions):

Structures subject to dry internal conditions.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be transmitted. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static and quasi-static loads, under fire exposure and under seismic actions are designed in accordance with EN 1992-4:2018.

Installation:

- Rotary hammer drilling only: all sizes and all embedment depths.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.
- After installation further turning of the anchor is not possible. The head of the anchor is supported on the fixture and is not damaged.
- Adjustment according to Annex B5 and Table C1.

R-LX

Annex B1

Intended use Specification

Page 8 of European Technical Assessment ETA-17/0806, issued on 29/06/2020

Installed anchor R-LX-HF, R-LX-CS, R-LX-P and R-LX-PX

Table B1: Installation parameters - standard embedment depth

Anchor size			R-LX-05	R-LX-06	R-LX-08	R-LX-10	R-LX-12	R-LX-14
Nominal drill bit diameter	d _{cut}	mm	5	6	8	10	12	14
Maximum drill bit diameter	d _{cut,max}	mm	5,40	6,40	8,45	10,45	12,50	14,50
Depth of drill hole*	h₀≥	mm	50	65	80	95	110	130
Nominal embedment depth	h _{nom}	mm	43	55	70	85	100	120
Effective embedment depth	h _{ef}	mm	32	42	53	65	76	92
Maximum installation torque	T _{imp,max}	Nm	200	400	900	950	950	950
Clearance hole in the fixture	d _f ≤	mm	7	9	12	14	16	18
Minimum thickness of member	h _{min}	mm	100	100	110	130	155	190
Thickness of the fixture, max.	t _{fix}	mm			L	- h _{nom}		

* Real depth of drill hole $h_0 = L + 10 - t_{fix}$

Table B2: Installation parameters – reduced embedment depth

Anchor size			R-LX-06	R-LX-08	R-LX-10	R-LX-12	R-LX-14		
Nominal drill bit diameter	d _{cut}	mm	6	8	10	12	14		
Maximum drill bit diameter	d _{cut,max}	mm	6,40	8,45	10,45	12,50	14,50		
Depth of drill hole	h₀≥	mm	50	60	65	70	85		
Nominal embedment depth	h _{nom}	mm	43	50	55	60	75		
Effective embedment depth	h _{ef}	mm	32	36	40	42	54		
Maximum installation torque	T _{imp,max}	Nm	400	900	950	950	950		
Clearance hole in the fixture	d _f ≤	mm	9	12	14	16	18		
Minimum thickness of member	h _{min}	mm	100	100	100	110	110		
Thickness of the fixture, max.	mm	L - h _{nom}							

* Real depth of drill hole $h_0 = L + 10 - t_{fix}$

R-LX

Intended use Installation parameters Annex B2

Installed anchor R-LX-I and R-LX-E

Table B3: Installation parameters – standard embedment depth

Anchor size			R-LX-05	R-LX-06	R-LX-08	R-LX-10
Nominal drill bit diameter	d _{cut}	mm	5	6	8	10
Maximum drill bit diameter	d _{cut,max}	mm	5,40	6,40	8,45	10,45
Depth of drill hole	h₀≥	mm	50	65	80	95
Nominal embedment depth	h _{nom}	mm	43	55	70	85
Effective embedment depth	h _{ef}	mm	32	42	53	65
Maximum installation torque	T _{imp,max}	Nm	200	400	900	950
Minimum thickness of member	h _{min}	mm	100	100	110	130

Table B4: Installation parameters - reduced embedment depth

Anchor size			R-LX-06	R-LX-08	R-LX-10
Nominal drill bit diameter	d _{cut}	mm	6	8	10
Maximum drill bit diameter	d _{cut,max}	mm	6,40	8,45	10,45
Depth of drill hole	h₀≥	mm	50	60	65
Nominal embedment depth	h _{nom}	mm	39	50	55
Effective embedment depth	h _{ef}	mm	32	36	40
Maximum installation torque	T _{imp,max}	Nm	400	900	950
Minimum thickness of member	h _{min}	mm	100	100	100

Table B5: Minimum spacing and edge distance

Anchor size	R-LX-05	R-LX-06	R-LX-08	R-LX-10	R-LX-12	R-LX-14	
Minimum edge distance C _{min}	mm	40	45	50	60	80	100
Minimum spacing S _{min}	mm	40	45	50	60	80	100

DI	v
K -I	_ A

Annex B3

Intended use Installation parameters

Drill the hole with rotary hammer drilling machine. Drill to a required depth.

Clean the drill hole (blow out dust at least 4 times with a hand pump).

Tighten the anchor to the substrate.

Installation with any torque impact wrench up to the maximum torque moment $(T_{imp,max})$.

After installation a further turning of the screw must not be possible. The head of the screw must be in contact with the fixture / substrate and be not damaged.

Intended use Installation instruction and tools R-LX-CS, R-LX-E, R-LX-HF, R-LX-I, R-LX-P, R-LX-PX without adjustment Annex B4

Anchor size				R-LX-05	R-L	X-06	R-L	X-08	R-L	X-10	R-L	X-12	R-L	X-14
Nominal emb	edment depth	h _{nom}	[mm]	43	43	55	50	70	55	85	60	100	75	120
Adjustment							1				an phá	a de la composición de		
Total max. this adjustment la		t _{adj}	[mm]	10	-	10	-	10	-	10	-	10	-	10
Max. number adjustments	of	ns	[-]	2	-	2	-	2	-	2	-	2	-	2
Steel failure			- Mary Para								1			
Characteristic resistance N _{Rk.s} [kN]		[kN]	25,5	3	5,4	60),4	8:	2,4	11	3,0	15	7,0	
Partial safety	factor	γмs ¹⁾	[-]	1,4	1	,4	1	,4	1	,4	1	,4	1	,5
Pull-out failu	re		en de la compositione de compositione de la compositione de la composi		in maker	in an internet				43				
Characteristic uncracked cor	resistance in hcrete C20/25	N _{RK,p}	[kN]	7,0	-) ²⁾	12,0	-) ²⁾	-) ²⁾	-) ²⁾					
Characteristic cracked concr	resistance in rete C20/25	N _{Rk,p}	[kN]	4,5	-) ²⁾	7,0	7,0	13,0	8,0	-) ²⁾	7,0	-) ²⁾	13,0	-) ²⁾
Installation sa	fety factor	γinst	[-]	1,2	1,0		1	,0	1	,0	1	,0	1,	,0
concrete C30/37			[-]	1,08	1,	1,08		1,08		1,08		1,08		08
Increasing factor	concrete C40/50		[-]	1,15	1,	15	1,	1,15		1,15		1,15		15
	concrete C50/60		[-]	1,19	1,	19	1,19		1,19		1,19		1,19	
Concrete con	e failure and s	plitting fa	ailure								- Sector		199	
Effective emb	edment depth	h _{ef}	[mm]	32	32	42	36	53	40	65	42	76	54	92
Factor for unc concrete	racked	k _{ucr,N}	[-]	11,0	11	I,0	11	,0	11,0		11	,0	11	,0
Factor for crac	ked concrete	k _{cr,N}	[-]	7,7	7	,7	7	,7	7	,7	7	,7	7,	,7
Installation sat	fety factor	Yinst	[-]	1,2	1,0		1	,0	1	,0	1	,0	1,	0
Characteristic	concrete cone failure	S _{cr,N}	[mm]	90	90	126	112	160	120	196	126	228	165	276
spacing	splitting failure	S _{cr,sp}	[mm]	90	90	126	112	160	136	222	126	228	188	312
Characteristic	concrete cone failure	C _{cr,N}	[mm]	45	45	63	56	80	60	98	63	114	83	138
edge distance	splitting failure	C _{cr,sp}	[mm]	45	45	63	56	80	68	111	63	114	94	156

.

¹⁾ In the absence of other national regulations

²⁾ Pull-out failure is not decisive

R-LX

Performances Characteristic resistance for tension loads.

Annex C1

Anchor size			R-LX-05	R-L	X-06	R-L	X-08	R-L	X-10	R-L	K-12	R-L	K-14	
Nominal embedment depth	h _{nom}	[mm]	43	43	55	50	70	55	85	60	100	75	120	
Steel failure without lev	er arm													
Characteristic resistance	V _{RK,s}	[kN]	12,7	17	7,7	30,2		41,2		57,0		78,5		
Factor considering ductility	k7	[-]	0,8	0	0,8		0,8		,8	0,	8	0,8		
Partial safety factor	γ _{Ms} ¹⁾	[-]	1,5	1,5		1	1,5		,5	1,	5	1	5	
Steel failure with lever a	State State State State	and the second second	and the second			No. Contraction		13.Jr			1915		0	
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	19,0	31,8		72	2,4	12	3,6	20:	3,3	32	9,6	
Partial safety factor	γ _{Ms} ¹⁾	[-]	1,5	1,5		1	,5	1	,5	1,	5	1	,5	
Concrete pry-out failure		1997 - 1989 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -									1.4 Contraction of	Also and		
Factor	k ₈	[-]	1,0	1,0		1,0		1,0	2,0	1,0	2,0	1,0	2,0	
Installation safety factor	Yinst		1,0	1,0		1,0		1,0		1,0		1,0		
Concrete edge failure	(raise)	er and							Mar and					
Outside diameter on anchor	d _{nom}	[mm]	5	6			B	1	0	12		14		
Effective length of anchor under shear loads	ŀr	[mm]	43	43	55	50	70	55	85	60	100	75	120	
Installation safety factor	γinst	[-]	1,0	1,0		1,0		1	,0	1,0		1	0	
Minimum member thickness	h _{min}	[mm]	100	100	100	100	110	100	130	110	155	110	190	
Displacements													9.4	
Tension load in uncracke	d concrete	C20/25 to	C50/60											
Tension load	N	[kN]	2,9	5	,6	11	1,0	14	1,9	18	3,1	23	8,1	
Short term tension displacement	δ _{ΝΟ}	[mm]	0,3	0	,3	0	,4	0,4		0,5		0,5		
Long term tension displacement	δ _{N∞}	[mm]	0,85	o	,9	1	,0	1	,0	1	,2	1,	25	
Tension load in cracked	concrete C	20/25 to C	50/60											
Tension load	N	[kN]	2,3	4	,4	6	,7	10	0,2	12	2,4	17	7,7	
Short term tension displacement	δ _{ΝΟ}	[mm]	0,4	0	,4	0	,5	0	,5	0	,6	0	,7	
Long term tension displacement	δ _{N∞}	[mm]	2,0	2	2,0	2	,0	2	,0	2	,0	2	,0	
Shear load in cracked an	d uncracke	ed concret	e C20/25 to C	50/60										
Shear load	v	[kN]	5,6	8	i ,1	1	1,9	18	3,7	27	7,1	38	5,2	
Short term shear displacement	δνο	[mm]	1,4	1	,5	2	,5	2	,5	2	,5	2	,5	
Long term shear displacement	δγ∞	[mm]	2,1	2,	25	3,	3,75		3,75		3,75		3,75	

R-LX

Annex C2

Performances Characteristic resistance for shear loads. Displacements

Anchor size			R-LX-08	R-LX-10	R-LX-14			
Nominal embedment depth	h _{nom}	[mm]	70	85	120			
Steel failure for tension and shea	rload							
Characteristic resistance	N _{Rk,s,eq}	[kN]	60,4	82,4	157,0			
	$V_{Rk,s,eq}$	[kN]	15,1	27,4	52,3			
Pullout failure			1	e a series	and and a state of the			
Characteristic resistance	N _{Rk,p,eq}	[kN]	5,4	13,5	19,2			
Concrete cone failure	Server and a server				-			
Effective embedment depth	h _{ef}	[mm]	53	65	92			
Characteristic edge distance	C _{cr,N}	[mm]		1,5 h _{er}				
Characteristic spacing	S _{cr,N}	[mm]		3 h _{ef}				
Installation safety factor	γinst	[-]		1,0				
Concrete pry-out failure								
Factor	k ₈	[-]	1,0	2,0	2,0			
Concrete edge failure								
Outside diameter on anchor	d _{nom}	[mm]	8	10	14			
Effective length of anchor under shear loads	l _r	[mm]	70	85	120			

Table C3: Characteristic values for seismic performance category C1

R-LX

Annex C3

Performances Characteristic values for seismic performance category C1

Anchor size		1.6. 1.1.1.1.1	R-LX-08	R-LX-10	R-LX-14
Nominal embedment depth	h _{nom}	[mm]	70	85	120
Steel failure for tension and shear	load				
Characteristic resistance	N _{Rk,s.eq}	[kN]	60,4	82,4	157,0
Characteristic resistance	V _{Rk,s,eq}	[kN]	9,9	20,6	35,1
Pullout failure					
Characteristic resistance	N _{Rk,p,eq}	[kN]	1,57	4,91	14,87
Concrete cone failure	Para D				
Effective embedment depth	h _{ef}	[mm]	53	65	92
Characteristic edge distance	C _{cr,N}	[mm]		1,5 h _{ef}	
Characteristic spacing	S _{cr,N}	[mm]		3 h _{ef}	
Installation factor	Yinst	[-]		1,0	
Concrete pry-out failure			and a second		a shere a
Factor	k ₈	[-]	1,0	2,0	2,0
Concrete edge failure	h she start				
Outside diameter on anchor	d _{nom}	[mm]	8	10	14
Effective length of anchor under shear loads	ŀr	[mm]	70	85	120
Displacements					
Displacements under tension load					
Displacement DLS	δ _{N,eq}	[mm]	0,10	0,20	0,63
Displacement ULS	δ _{N,eq}	[mm]	0,50	0,73	3,94
Displacements under shear load					
Displacement DLS	δ _{V,eq}	[mm]	2,00	3,44	4,22
Displacement ULS	δ _{v,eq}	[mm]	3,04	5,04	7,15

Table C4: Characteristic values for seismic performance category C2

R-LX

Performances

Characteristic values for seismic performance category C2

Annex C4

- F - F	ent	and the second se	and the second second	R-LX-05	R-L	R-LX-06		R-LX-08		X-10	R-LX-12		R-LX-14	
F - - - -		h _{nom}	[mm]	43	43	55	50	70	55	85	60	100	75	120
- F - F	ension	and shea	r load F _R	_{k,s,fi} = N _{Rk,s,}	$n = V_{Rk,s,fi}$		Sec. 1			and the second		199	9	
F	R30	F _{Rk,s,fi}	[kN]	0,20	0,28	0,28	0,75	0,75	1,57	1,57	2,26	2,26	3,08	3,08
-	R60	F _{Rk,s,fl}	[kN]	0,18	0,25	0,25	0,65	0,65	1,18	1,18	1,70	1,70	2,31	2,31
	R90	F _{Rk,s,fi}	[kN]	0,14	0,20	0,20	0,50	0,50	1,02	1,02	1,47	1,47	2,00	2,00
Characteristic	R120	F _{Rk,s,fi}	[kN]	0,10	0,14	0,14	0,40	0,40	0,79	0,79	1,13	1,13	1,54	1,54
esistance F	R30	M ⁰ Rk,s,fi	[Nm]	0,15	0,25	0,25	0,90	0,90	2,36	2,36	4,07	4,07	6,47	6,47
F	R60	M ⁰ _{Rk,s,fl}	[Nm]	0,13	0,23	0,23	0,78	0,78	1,77	1,77	3,05	3,05	4,85	4,85
F	R90	M ⁰ _{Rk,s,fl}	[Nm]	0,10	0,18	0,18	0,60	0,60	1,53	1,53	2,65	2,65	4,20	4,20
F	R120	M ⁰ _{Rk,s,fl}	[Nm]	0,07	0,13	0,13	0,48	0,48	1,18	1,18	2,04	2,04	3,23	3,23
Pull-out failure		and the second			1.54.5			Nach Ch				3	N. H. Star	
F	२३०	N _{Rk,p,fl}	[kN]	1,13	1,38	1,75	1,88	3,25	2,00	4,75	1,75	6,50	3,25	8,50
	R6 0	N _{Rk,p,fl}	[kN]	1,13	1,38	1,75	1,88	3,25	2,00	4,75	1,75	6,50	3,25	8,50
esistance F	२ ९०	N _{Rk,p,fl}	[kN]	1,13	1,38	1,75	1,88	3,25	2,00	4,75	1,75	6,50	3,25	8,50
F	R120	N _{Rk,p,fl}	[kN]	0,90	1,10	1,40	1,50	2,60	1,60	3,80	1,40	5,20	2,60	6,80
concrete cone fa														(N)
F -	२३०	N _{Rk,c,fl}	[kN]	0,89	0,89	2,06	1,50	3,68	1,82	6,13	2,06	9,06	4,04	14,61
maracteristic _	R60	N _{Rk,c,fl}	[kN]	0,89	0,89	2,06	1,50	3,68	1,82	6,13	2,06	9,06	4,04	14,61
esistance F	R90	N _{Rk,c,fl}	[kN]	0,89	0,89	2,06	1,50	3,68	1,82	6,13	2,06	9,06	4,04	14,61
F	R120	N _{Rk,c,1}	[kN]	0,71	0,71	1,65	1,20	2,94	1,46	4,91	1,65	7,25	3,23	11,69
dge distance														
30 to R120		C _{cr,fi}	[mm]						2∙h _{ef}		e 11			
case of fire atta	ck from	more than	one side	, the minim	um edge o	listance sh	nall be ≥ 30	10 mm.						
nchor spacing	-		[]											
30 to R120	failung	S _{cr,fl}	[mm]						4⋅h _{ef}					
oncrete pry-out	lanure	k	[-]	1,0	1,0	1,0	1,0	1,0	1,0	2,0	1.0	20	10	2.0
		~	13	1,0	1,0	1,0	1,0	1,0	1,0	2,0	1,0	2,0	1,0	2,0

Table C5: Characteristic resistance under fire exposure in cracked and uncracked concrete C20/25 to C50/60