LBS ROUND HEAD SCREW FOR PLATES

 CE ETA-11/0030

MY

SOFTWARE

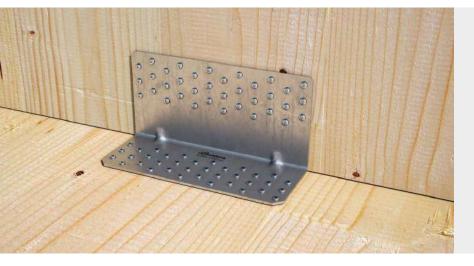
RUUND HEAD SCREW FUR PLATE

SCREW FOR PERFORATED PLATES

Cylindrical shoulder designed for fastening metal elements. Achieves an interlocking effect with the hole in the plate, thus guaranteeing excellent static performance.

STATICS

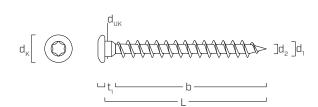
Can be calculated according to Eurocode 5 under thick plate timber-tosteel connections, even with thin metal elements. Excellent shear strength values.


DUCTILITY


The bending angle is 20° greater than standard, certified according to ETA-11/0030. Cyclical SEISMIC-REV tests according to EN 12512.

CHARACTERISTICS

FOCUS screw for perforated plates						
HEAD	round with cylindrical underhead					
DIAMETER	5,0 7,0 mm					
LENGTH	from 25 to 100 mm					


MATERIAL

Galvanized carbon steel.

FIELDS OF USE

- timber based panels
- solid timber
- glulam (Glued Laminated Timber)
- CLT, LVL
- high density woods
- Service classes 1 and 2.

GEOMETRY AND MECHANICAL CHARACTERISTICS

Nominal diameter	d1	[mm]	5	7
Head diameter	d _K	[mm]	7,80	11,00
Tip diameter	d ₂	[mm]	3,00	4,40
Underhead diameter	d _{UK}	[mm]	4,90	7,00
Head thickness	t ₁	[mm]	2,40	3,50
Pre-drilling hole diameter ⁽¹⁾	d _V	[mm]	3,0	4,0
Characteristic yield moment	M _{y,k}	[Nm]	5,4	14,2
Characteristic withdrawal-resist- ance parameter ⁽²⁾	f _{ax,k}	[N/mm ²]	11,7	11,7
Associated density	ρ _a	[kg/m ³]	350	350
Characteristic head-pull-through parameter ⁽²⁾	f _{head,k}	[N/mm ²]	10,5	10,5
Associated density	ρ _a	[kg/m ³]	350	350
Characteristic tensile strength	f _{tens,k}	[kN]	7,9	15,4

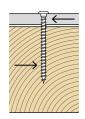
⁽¹⁾ Pre-drilling valid for softwood.

CODES AND DIMENSIONS

⁽²⁾ Valid for softwood - maximum density 440 kg/m³.
For applications with different materials or with high density please see ETA-11/0030.

d1	CODE		L	b	pcs
[mm] [inj		[mm]	[in]	[mm]	
	LBS525	25	1	21	500
5 0.20 TX 20	LBS540	40	1 9/16	36	500
	LBS550	50	1 15/16	46	200
	LBS560	60	2 3/8	56	200
	LBS570	70	2 3/4	66	200

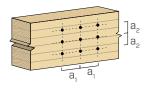
d1	CODE	I	L	b	pcs
[mm] [in]	1	[mm]	[in]	[mm]	
7	LBS760	60	2 3/8	55	100
0.28	LBS780	80	3 1/8	75	100
TX 30	LBS7100	100	4	95	100


ALUMAXI

Values also tested, certified and calculated for fastening standard Rothoblaas plates. The 7 mm diameter version is ideal for joining the ALUMAXI concealed beam hanger.

MINIMUM DISTANCES FOR SHEAR LOADS | STEEL-TO-TIMBER

Load-to-grain angle $\alpha = 0^{\circ}$

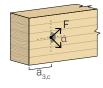


Load-to-grain angle $\alpha = 90^{\circ}$

					1						
		SCREWS	INSERTED WITH PRE-	DRILLING HOLE	SCREWS INSERTED WITH PRE-DRILLING HOLE						
d1	[mm]		5	7		5	7				
a ₁	[mm]	5·d · 0,7	18	25	4·d · 0,7	14	20				
a ₂	[mm]	3·d · 0,7	11	15	4·d · 0,7	14	20				
a _{3,t}	[mm]	12·d	60	84	7∙d	35	49				
a _{3,c}	[mm]	7∙d	35	49	7∙d	35	49				
a _{4,t}	[mm]	3·d	15	21	7∙d	35	49				
a _{4,c}	[mm]	3·d	15	21	3∙d	15	21				
						·	·				
		SC DEWS IN			SCREWS INSERTED WITHOUT PRE-DRILLING HOLE						

		SCREWS IN	ISERTED WITHOUT PR	E-DRILLING HOLE	SCREWS INSERTED WITHOUT PRE-DRILLING HOLE					
d1	[mm]		5	7		5	7			
a ₁	[mm]	12·d · 0,7	42	59	5·d · 0,7	18	25			
a ₂	[mm]	5·d · 0,7	18	25	5·d · 0,7	18	25			
a _{3,t}	[mm]	15·d	75	105	10·d	50	70			
a _{3,c}	[mm]	10·d	50	70	10·d	50	70			
a _{4,t}	[mm]	5∙d	25	35	10·d	50	70			
a _{4,c}	[mm]	5·d	25	35	5∙d	25	35			

d = nominal screw diameter

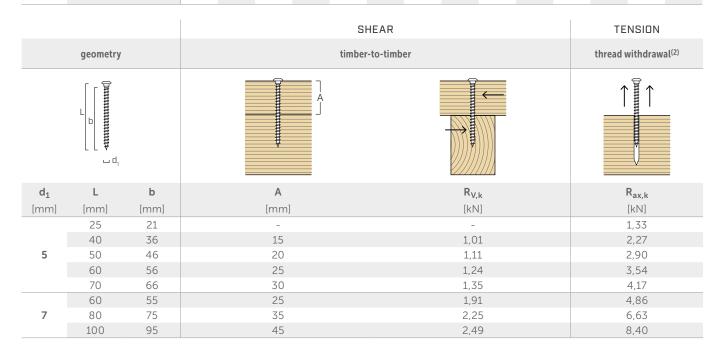


a_{at}

stressed end

-90° < α < 90°

unloaded end 90° < α < 270°



NOTES:

- The minimum distances are compliant with EN 1995:2014, according to ETA, considering a timber characteristic density of $\rho_k \leq$ 420 kg/m³ and calculation diameter of d = nominal screw diameter.
- In the case of timber-to-timber joints, the minimum spacing (a_1, a_2) can be multiplied by a coefficient of 1,5.

			SHEAR													
geometry steel-to-timber ⁽¹⁾																
			→ Splate													
d1	L	b								V,k						
[mm]	[mm]	[mm]							[k	N]						
	25	21		1,59		1,58		1,56		-		-		-		-
	40	36	3 1	2,24	" E	2,24	= E	2,24	ع «	2,24	» Е	2,23	" E	-	» Е	-
5	50	46	S _{PLATE} = 1,5 mm	2,39	S _{PLATE} = 2,0 mm	2,39	S _{PLATE} = 2,5 mm	2,39	S _{PLATE} = 3,0 mm	2,39	S _{PLATE} = 4,0 mm	2,39	S _{PLATE} = 5,0 mm	2,38	S _{PLATE} = 6,0 mm	2,36
	60	56	J, Sp	2,55	2,0 2,0	2,55	ς, S	2,55	S _P	2,55	ς 4,	2,55	ς ^Δ	2,54	S _P	2,52
	70	66		2,71		2,71		2,71		2,71		2,71		2,69		2,68
	60	55	ع «	2,86	" E	۲۰۵ 2,81 = 2,81 3,80 Splatte = 4,0 mm 4,25 Splatte = 4,0 mm	" E	2,98	ع «	3,37	S _{PLATE} = 6,0 mm	3,79	3 "	4,21	" E	4,18
7	80	75	S _{PLATE} = 2,0 mm	3,81	S _{PLATE} = 3,0 mm		J J 41E 08,	3,88	S _{PLATE} = 5,0 mm	4,13		4,38	S _{PLATE} = 7,0 mm	4,66	S _{PLATE} = 8,0 mm	4,63
	100	95	S _{PI}	4,25	S _{PI}	4,25	S _P ∣	4,38	S _P 5,0	4,63	S _{PI}	4,87	S _{PI}	5,10	8,(5,08

NOTES:

- $^{(1)}$ The characteristic shear-strength value for LBS Ø5 nails has been evaluated assuming a plate thickness = S_{PLATE}, always considering the case of thick plate according to ETA-11/0030 (S_{PLATE} \geq 1,5 mm).
 - The characteristic shear-strength value for LBS Ø7 screws has been evaluated assuming a plate thickness = S_{PLATE} , and considering the thin ($S_{PLATE} \leq 0,5 d_1$), intermediate ($0,5 d_1 < S_{PLATE} < d_1$) or thick ($S_{PLATE} \ge d_1$) plate case scenario.
- $^{\rm (2)}$ The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.

GENERAL PRINCIPLES:

 Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

• Design values can be obtained from characteristic values as follows:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

The coefficients γ_M and k_{mod} should be taken according to the current regulations used for the calculation.

- For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030.
- + For the calculation process a timber characteristic density ρ_k = 385 kg/m^3 has been considered.
- Dimensioning and verification of timber elements and steel plates must be carried out separately.
- The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained.